Sử dụng kiến thức về trường hợp đồng dạng thứ ba của hai tam giác (g.g) để tính. Hướng dẫn giải bài 9 trang 64 sách bài tập (SBT) toán 8 - Chân trời sáng tạo tập 2 - Bài 2. Các trường hợp đồng dạng của hai tam giác. Quan sát Hình 9. Chứng minh rằng $\Delta ABC\backsim \Delta MNQ$. Tính x, y....
Quan sát Hình 9.
a) Chứng minh rằng $\Delta ABC\backsim \Delta MNQ$.
b) Tính x, y.
Advertisements (Quảng cáo)
Sử dụng kiến thức về trường hợp đồng dạng thứ ba của hai tam giác (g.g) để tính: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.
a) Tam giác ABC và tam giác MNQ có: \(\widehat A = \widehat M,\widehat C = \widehat Q\). Do đó, $\Delta ABC\backsim \Delta MNQ\left( g.g \right)$
b) Vì $\Delta ABC\backsim \Delta MNQ\left( cmt \right)$ nên \(\frac{{BA}}{{MN}} = \frac{{BC}}{{NQ}} = \frac{{AC}}{{MQ}}\), suy ra \(\frac{{y - 1}}{5} = \frac{{3,5}}{{x + 2}} = \frac{5}{{10}} = \frac{1}{2}\)
Do đó, \(y - 1 = \frac{5}{2}\), \(y = \frac{7}{2}\) và \(x + 2 = 7\), \(x = 5\)