Tìm tích của hai đa thức:
a) \(2{x^4} - {x^3}y + 6x{y^3} + 2{y^4}\) và \({x^4} + 3{x^3}y - 2{y^4}\);
b) \({x^3}y + 0,4{x^2}{y^2} - x{y^3}\) và \(5{x^2} - 2,5xy + 5{y^2}\).
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
a) Ta có
\(\left( {2{x^4} - {x^3}y + 6x{y^3} + 2{y^4}} \right)\left( {{x^4} + 3{x^3}y - 2{y^4}} \right)\)
\(\begin{array}{l} = 2{x^4}\left( {{x^4} + 3{x^3}y - 2{y^4}} \right) - {x^3}y\left( {{x^4} + 3{x^3}y - 2{y^4}} \right) + 6x{y^3}\left( {{x^4} + 3{x^3}y - 2{y^4}} \right) + \\ + 2{y^4}\left( {{x^4} + 3{x^3}y - 2{y^4}} \right)\end{array}\)
Advertisements (Quảng cáo)
\( = 2{x^8} + 6{x^7}y - 4{x^4}{y^4} - {x^7}y - 3{x^6}{y^2} + 2{x^3}{y^5} + 6{x^5}{y^3} + 18{x^4}{y^4} - 12x{y^7} + 2{x^4}{y^4} + 6{x^3}{y^5} - 4{y^8}\)
\(\begin{array}{l} = 2{x^8} + \left( {6{x^7}y - {x^7}y} \right) + \left( { - 4{x^4}{y^4} + 18{x^4}{y^4} + 2{x^4}{y^4}} \right) - 3{x^6}{y^2} + \left( {2{x^3}{y^5} + 6{x^3}{y^5}} \right) + \\ + 6{x^5}{y^3} - 12x{y^7} - 4{y^8}\end{array}\)
\( = 2{x^8} + 5{x^7}y + 16{x^4}{y^4} - 3{x^6}{y^2} + 8{x^3}{y^5} + 6{x^5}{y^3} - 12x{y^7} - 4{y^8}\).
b) Ta có
\(\left( {{x^3}y + 0,4{x^2}{y^2} - x{y^3}} \right).\left( {5{x^2} - 2,5xy + 5{y^2}} \right)\)
\( = {x^3}y\left( {5{x^2} - 2,5xy + 5{y^2}} \right) + 0,4{x^2}{y^2}\left( {5{x^2} - 2,5xy + 5{y^2}} \right) - x{y^3}\left( {5{x^2} - 2,5xy + 5{y^2}} \right)\)
\( = 5{x^5}y - 2,5{x^4}{y^2} + 5{x^3}{y^3} + 2{x^4}{y^2} - {x^3}{y^3} - 2{x^2}{y^4} - 5{x^3}{y^3} + 2,5{x^2}{y^4} + 5x{y^5}\)
\( = 5{x^5}y + \left( { - 2,5{x^4}{y^2} + 2{x^4}{y^2}} \right) + \left( {5{x^3}{y^3} - {x^3}{y^3} - 5{x^3}{y^3}} \right) + 2{x^4}{y^2} + 2,5{x^2}{y^4} + 5x{y^5}\)
\( = 5{x^5}y - 0,5{x^4}{y^2} - {x^3}{y^3} + 2{x^4}{y^2} + 2,5{x^2}{y^4} + 5x{y^5}\).