Thực hiện phép tính:
a) \(\left( {x - 2y} \right)\left( {{x^2}z + 2xyz + 4{y^2}z} \right)\)
b) \(\left( {{x^2} - \frac{1}{3}xy + \frac{1}{9}{y^2}} \right)\left( {x + \frac{1}{3}y} \right)\).
Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.
a) \(\left( {x - 2y} \right)\left( {{x^2}z + 2xyz + 4{y^2}z} \right)\)
\( = x\left( {{x^2}z + 2xyz + 4{y^2}z} \right) - 2y\left( {{x^2}z + 2xyz + 4{y^2}z} \right)\)
Advertisements (Quảng cáo)
\( = {x^3}z + 2{x^2}yz + 4x{y^2}z - 2{x^2}yz - 4x{y^2}z - 8{y^3}z\)
\( = {x^3}z + \left( {2{x^2}yz - 2{x^2}yz} \right) + \left( {4x{y^2}z - 4x{y^2}z} \right) - 8{y^3}z\)
\( = {x^3}z - 8{y^3}z\).
b) \(\left( {{x^2} - \frac{1}{3}xy + \frac{1}{9}{y^2}} \right)\left( {x + \frac{1}{3}y} \right)\)
\( = {x^2}\left( {x + \frac{1}{3}y} \right) - \frac{1}{3}xy\left( {x + \frac{1}{3}y} \right) + \frac{1}{9}{y^2}\left( {x + \frac{1}{3}y} \right)\)
\( = {x^3} + \frac{1}{3}{x^2}y - \frac{1}{3}{x^2}y - \frac{1}{9}x{y^2} + \frac{1}{9}x{y^2} + \frac{1}{{27}}{y^3}\)
\( = {x^3} + \left( {\frac{1}{3}{x^2}y - \frac{1}{3}{x^2}y} \right) + \left( { - \frac{1}{9}x{y^2} + \frac{1}{9}x{y^2}} \right) + \frac{1}{{27}}{y^3}\)
\( = {x^3} + \frac{1}{{27}}{y^3}\)