Rút gọn rồi tính giá trị của các phân thức sau:
a) \(P = \frac{{\left( {2{x^2} + 2x} \right){{\left( {2 - x} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}}\) với \(x = 0,5\);
b) \(Q = \frac{{{x^3} - {x^2}y + x{y^2}}}{{{x^3} + {y^3}}}\) với \(x = - 5;y = 10\)
* Sử dụng kiến thức rút gọn phân thức để rút gọn phân thức:
+ Rút gọn phân thức là biến đổi phân thức đó thành một biểu thức mới bằng nó nhưng đơn giản hơn
+ Muốn rút gọn một phân thức đại số ta làm như sau:
Advertisements (Quảng cáo)
- Phân tích tử và mẫu thành nhân tử (nếu cần) để tìm nhân tử chung;
- Chia cả tử và mẫu cho nhân tử chung đó.
* Sử dụng kiến thức giá trị của phân thức tại một giá trị đã cho của biến để tính giá trị phân thức: Muốn tính giá trị của một phân thức tại một giá trị đã cho của biến ta thay giá trị đã cho của biến vào phân thức đó rồi tính giá trị biểu thức số nhận được.
a) \(P = \frac{{\left( {2{x^2} + 2x} \right){{\left( {2 - x} \right)}^2}}}{{\left( {{x^3} - 4x} \right)\left( {x + 1} \right)}} = \frac{{2x\left( {x + 1} \right){{\left( {x - 2} \right)}^2}}}{{x\left( {{x^2} - 4} \right)\left( {x + 1} \right)}} = \frac{{2{{\left( {x - 2} \right)}^2}}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{2\left( {x - 2} \right)}}{{x + 2}}\)
Thay \(x = 0,5\) vào P ta có: \(P = \frac{{2\left( {0,5 - 2} \right)}}{{0,5 + 2}} = \frac{{ - 3}}{{2,5}} = \frac{{ - 6}}{5}\)
b) \(Q = \frac{{{x^3} - {x^2}y + x{y^2}}}{{{x^3} + {y^3}}} = \frac{{x\left( {{x^2} - xy + {y^2}} \right)}}{{\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)}} = \frac{x}{{x + y}}\)
Thay \(x = - 5;y = 10\) vào Q ta có: \(Q = \frac{{ - 5}}{{ - 5 + 10}} = \frac{{ - 5}}{5} = - 1\)