Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Bài 7.5 trang 18 SBT Toán 8 – Kết nối tri thức:...

Bài 7.5 trang 18 SBT Toán 8 - Kết nối tri thức: Tùy theo các giá trị của m, hãy giải phương trình ẩn x sau...

Sử dụng kiến thức giải phương trình để giải: Với \(a = 0,b = 0\) thì phương trình \(ax + b = 0\) có vô số nghiệm. Hướng dẫn giải bài 7.5 trang 18 sách bài tập toán 8 - Kết nối tri thức với cuộc sống - Bài 25. Phương trình bậc nhất một ẩn. Tùy theo các giá trị của m, hãy giải phương trình ẩn x sau:...

Question - Câu hỏi/Đề bài

Tùy theo các giá trị của m, hãy giải phương trình ẩn x sau: \(\left( {{m^2} - 1} \right)x + 1 - m = 0\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức giải phương trình để giải:

- Với \(a = 0,b = 0\) thì phương trình \(ax + b = 0\) có vô số nghiệm.

- Với \(a = 0,b \ne 0\) thì phương trình \(ax + b = 0\) vô nghiệm.

- Với \(a \ne 0\) thì phương trình \(ax + b = 0\) được giải như sau:

\(ax + b = 0\)

\(ax = - b\)

Advertisements (Quảng cáo)

\(x = \frac{{ - b}}{a}\)

Vậy phương trình \(ax + b = 0\left( {a \ne 0} \right)\) luôn có nghiệm duy nhất \(x = \frac{{ - b}}{a}\)

Answer - Lời giải/Đáp án

Với \(m = 1\) ta có phương trình \(0.x + 0 = 0\) nên phương trình có nghiệm đúng với mọi x (tức là tập nghiệm là tập số thực \(\mathbb{R}\))

Với \(m = - 1\) thì ta có phương trình \(0.x + 2 = 0\), phương trình này vô nghiệm

Với \(m \ne \pm 1\) ta có phương trình \(\left( {{m^2} - 1} \right)x + 1 - m = 0\)

\(\left( {{m^2} - 1} \right)x = m - 1\)

\(x = \frac{{m - 1}}{{{m^2} - 1}} = \frac{{m - 1}}{{\left( {m - 1} \right)\left( {m + 1} \right)}} = \frac{1}{{m + 1}}\)

Khi \(m \ne \pm 1\) thì phương trình \(\left( {{m^2} - 1} \right)x + 1 - m = 0\) luôn có nghiệm duy nhất \(x = \frac{1}{{m + 1}}\)

Advertisements (Quảng cáo)