Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Bài 9.61 trang 68 SBT Toán 8 – Kết nối tri thức:...

Bài 9.61 trang 68 SBT Toán 8 - Kết nối tri thức: Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0}, \widehat N = {40^0}\)...

Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ. Giải chi tiết bài 9.61 trang 68 sách bài tập (SBT) toán 8 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IX. Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0}, \widehat N = {40^0}\)....

Question - Câu hỏi/Đề bài

Cho $\Delta ABC\backsim \Delta MNP$ với \(\widehat A = {60^0},\widehat N = {40^0}\). Hãy tính số đo các góc còn lại của hai tam giác ABC và MNP.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tìm các góc bằng nhau, các cặp cạnh tỉ lệ:

+ Tam giác A’B’C’ được gọi là đồng dạng với tam giác ABC nếu các cạnh tương ứng tỉ lệ và các góc tương ứng bằng nhau, tức là \(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}};\widehat {A’} = \widehat A,\widehat {B’} = \widehat B,\widehat {C’} = \widehat C\).

Advertisements (Quảng cáo)

+ Tam giác A’B’C’ đồng dạng với tam giác ABC được kí hiệu là: $\Delta A’B’C’\backsim \Delta ABC$ (viết theo thứ tự cặp đỉnh tương ứng). Ở đây hai đỉnh A và A’ (B và B’, C và C’) là hai đỉnh tương ứng, các cạnh tương ứng \(\frac{{A’B’}}{{AB}} = \frac{{B’C’}}{{BC}} = \frac{{A’C’}}{{AC}} = k\) được gọi là tỉ số đồng dạng.

Answer - Lời giải/Đáp án

Vì $\Delta ABC\backsim \Delta MNP$ nên \(\widehat A = \widehat M = {60^0},\widehat B = \widehat N = {40^0},\widehat C = \widehat P\)

Tam giác ABC có: \(\widehat A + \widehat B + \widehat C = {180^0}\) nên \(\widehat C = {180^0} - \widehat A - \widehat B = {180^0} - {60^0} - {40^0} = {80^0}\)

Suy ra \(\widehat C = \widehat P = {80^0}\)

Advertisements (Quảng cáo)