Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.
Đặt độ dài AB = a, BC = b, CD = c, AD = d
Gọi O là giao điểm hai đường chéo AC và BD
Trong ∆OAB, ta có:
OA + OA > a (bất đẳng thức tam giác) (1)
Trong ∆OCD ta có:
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c
Hay AC + BD > a + c (*)
-Trong ∆OAD ta có: OA + OD > d (bất đẳng thức tam giác) (3)
-Trong ∆OBC ta có: OB + OC > b (bất đẳng thức tam giác) (4)
Advertisements (Quảng cáo)
Từ (3) và (4) suy ra: OA + OD + OB + OC > b + d
⇒ AC + BD > b + d (**)
Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d
\(⇒ AC + BD > {{a + b + c + d} \over 2}\)
-Trong ∆ABC ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)
-Trong ∆ADC ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)
Suy ra: 2AC < a + b + c + d
\(AC < {{a + b + c + d} \over 2}\) (5)
-Trong ∆ABD ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)
-Trong ∆BCD ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)
Suy ra: 2BD < a + b + c + d
\(BD < {{a + b + c + d} \over 2}\) (6)
Từ (5) và (6) suy ra: AC + BD < a + b + c + d