. Câu 36 trang 10 Sách bài tập (SBT) Toán 8 tập 1 - Bài 9. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Phân tích thành nhân tử
a. \({x^2} + 4x + 3\)
b. \(2{x^2} + 3x - 5\)
c. \(16x - 5{x^2} - 3\)
Advertisements (Quảng cáo)
a. \({x^2} + 4x + 3\) \( = {x^2} + x + 3x + 3 = \left( {{x^2} + x} \right) + \left( {3x + 3} \right)\)
\(x\left( {x + 1} \right) + 3\left( {x + 1} \right) = \left( {x + 1} \right)\left( {x + 3} \right)\)
b. \(2{x^2} + 3x – 5\) \( = 2{x^2} - 2x + 5x - 5 = \left( {2{x^2} - 2x} \right) + \left( {5x - 5} \right)\)
\( = 2x\left( {x - 1} \right) + 5\left( {x - 1} \right) = \left( {x - 1} \right)\left( {2x + 5} \right)\)
c. \(16x - 5{x^2} – 3\) \( = 15x - 5{x^2} - 3 + x = \left( {15x - 5{x^2}} \right) - \left( {3 - x} \right)\)
\( = 5x\left( {3 - x} \right) - \left( {3 - x} \right) = \left( {3 - x} \right)\left( {5x - 1} \right)\)