Tứ giác ABCD có \(\widehat A = {110^0},\widehat B = {100^0}\). Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat {CED},\widehat {CFD}\)
- Trong tứ giác ABCD, ta có:
\(\eqalign{
& \widehat A + \widehat B + \widehat C + \widehat D = {360^0} \cr
& \Rightarrow \widehat C + \widehat D = {360^0} - \left( {\widehat A + \widehat B} \right) \cr
& = {360^0} - \left( {{{110}^0} + {{100}^0}} \right) = {150^0} \cr
& {\widehat D_1} + {\widehat C_1} = {{\widehat C + \widehat D} \over 2} = {{{{150}^0}} \over 2} = {75^0} \cr} \)
- Trong ∆CED, ta có:
\(\widehat {CED} = {180^0} - \left( {{{\widehat C}_1} + {{\widehat D}_1}} \right) = {180^0} - {75^0} = {105^0}\)
Advertisements (Quảng cáo)
DE ⊥ DF (tính chất tia phân giác của hai góc kề bù)
\(\Rightarrow \widehat {EDF} = {90^0}\)
CE ⊥ CF (tính chất tia phân giác của hai góc kề bù)
\( \Rightarrow \widehat {ECF} = {90^0}\)
Trong tứ giác CEDF, ta có:
\(\eqalign{
& \widehat {DEC} + \widehat {EDF} + \widehat {DFC} + \widehat {ECF} = {360^0} \cr
& \Rightarrow \widehat {DFC} = {360^0} - \left( {\widehat {DEC} + \widehat {EDF} + \widehat {ECF}} \right) \cr
& \widehat {DFC} = {360^0} - \left( {{{105}^0} + {{90}^0} + {{90}^0}} \right) = {75^0} \cr} \)