38. Chứng minh các đẳng thức sau:
a) (a – b)3 = -(b – a)3; b) (- a – b)2 = (a + b)2
a) (a – b)3 = -(b – a)3
Biến đổi vế phải thành vế trái:
-(b – a)3= -(b3 – 3b2a + 3ba2 – a3) = - b3 + 3b2a - 3ba2 + a3
= a3 – 3a2b + 3ab2 – b3 = (a – b)3
Sử dụng tính chất hai số đối nhau:
Advertisements (Quảng cáo)
(a – b)3 = [(-1)(b – a)]3 = (-1)3(b – a)3 = -13 . (b – a)3 = - (b – a)3
b) (- a – b)2 = (a + b)2
Biến đổi vế trái thành vế phải:
(- a – b)2 = [(-a) + (-b)]2
= (-a)2 +2 . (-a) . (-b) + (-b)2
= a2 + 2ab + b2 = (a + b)2
Sử dụng tính chất hai số đối nhau:
(-a – b)2 = [(-1) . (a + b)]2 = (-1)2 . (a + b)2 = 1 . (a + b)2 = (a + b)2