Chứng minh ΔABD ∽ ΔBDC (g. g) b) Tính tỉ số đồng dạng của tam giác ABD và tam giác BDC. Lời giải Giải bài 3 trang 90 vở thực hành Toán 8 tập 2 - Luyện tập chung trang 90 . Cho hình thang ABCD (AB // CD) có \(\widehat{DAB}=\widehat{DBC}\)
Câu hỏi/bài tập:
Cho hình thang ABCD (AB // CD) có \(\widehat{DAB}=\widehat{DBC}\)
a) Chứng minh rằng ΔABD ∽ ΔBDC.
b) Giả sử AB = 2cm, AD = 3cm, BD = 4cm. Tính độ dài các cạnh BC và DC.
Advertisements (Quảng cáo)
a) Chứng minh ΔABD ∽ ΔBDC (g.g)
b) Tính tỉ số đồng dạng của tam giác ABD và tam giác BDC. Từ đó tính độ dài của DC, BC
a) Hai tam giác ABD và BDC có: $\widehat{ABD}=\widehat{BDC}$ (hai góc so le trong), $\widehat{DAB}=\widehat{CBD}$ (theo giả thiết).
Do đó $\Delta ABD\backsim \Delta BDC$ (g.g).
b) Từ $\Delta ABD\backsim \Delta BDC$ suy ra $\frac{AD}{BC}=\frac{BD}{DC}=\frac{AB}{BD}=\frac{1}{2}$.
Do đó BC = 2.AD = 6 (cm), DC = 2.BD = 8 (cm)