Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Bài 6 trang 91 vở thực hành Toán 8 tập 2: Cho...

Bài 6 trang 91 vở thực hành Toán 8 tập 2: Cho hình thang ABCD (AB // CD) và các điểm M...

Gọi E là giao điểm của AC và MN Sử dụng các tam giác đồng dạng để tính độ dài ME, EN. Trả lời Giải bài 6 trang 91 vở thực hành Toán 8 tập 2 - Luyện tập chung trang 90 . Cho hình thang ABCD (AB // CD) và các điểm M,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho hình thang ABCD (AB // CD) và các điểm M, N lần lượt trên cạnh AD và BC sao cho 2AM = MD, 2BN = NC. Biết AB = 5cm, CD = 6cm. Hãy tính độ dài đoạn thẳng MN.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Gọi E là giao điểm của AC và MN

Sử dụng các tam giác đồng dạng để tính độ dài ME, EN. Từ đó tính độ dài đoạn MN.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Vẽ đường thẳng đi qua M song song với CD cắt AC tại E.

Khi đó $\frac{AE}{EC}=\frac{AM}{MD}=\frac{1}{2}$ (theo định lý Thalès). Do đó $\frac{AE}{EC}=\frac{BN}{NC}$ và kéo theo NE // AB (theo định lý Thalès đảo). Như vậy ME và NE cùng song song với hai cạnh đáy của hình thang và do đó chúng trùng nhau, hay nói cách khác M, N, E thẳng hàng.

Mặt khác $\Delta AME\backsim \Delta ADC$ (vì ME // DC) nên $\frac{ME}{DC}=\frac{AM}{AD}=\frac{1}{3}$, hay $ME=\frac{DC}{3}=2cm$.

Tương tự, $\Delta CEN\backsim \Delta CAB$ (vì NE // AB) nên $\frac{EN}{AB}=\frac{CN}{CB}=\frac{2}{3}$, hay $EN=\frac{2AB}{3}=\frac{10}{3}(cm)$. Vậy MN = ME + EN = $\frac{16}{3}$ (cm).

Advertisements (Quảng cáo)