Câu hỏi/bài tập:
Viết biểu thức \({x^6} - {y^6}\) dưới dạng tích.
- Sử dụng hằng đẳng thức hiệu hai bình phương: \({a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\)
Advertisements (Quảng cáo)
- Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
- Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Ta có \({x^6} - {y^6} = {\left( {{x^3}} \right)^2} - {\left( {{y^3}} \right)^2} = \left( {{x^3} - {y^3}} \right)\left( {{x^3} + {y^3}} \right)\)
\(\begin{array}{l} = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right)\\ = \left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + xy + {y^2}} \right)\left( {{x^2} - xy + {y^2}} \right)\end{array}\)