Sử dụng hằng đẳng thức tổng hai lập phương. Giải chi tiết Câu 2 trang 33 - Bài 8. Tổng và hiệu hai lập phương - Vở thực hành Toán 8.
Câu hỏi/bài tập:
Đa thức \({x^3} + 8{y^3}\) được viết thành tích của hai đa thức:
A. \(x + 2y\) và \({x^2} + 2xy + 4{y^2}\).
B. \(x + 2y\) và \({x^2} - 2xy + 4{y^2}\).
C. \(x - 2y\) và \({x^2} - 2xy + 4{y^2}\).
D. \(x - 2y\) và \({x^2} + 2xy + 4{y^2}\).
Advertisements (Quảng cáo)
Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
Ta có \({x^3} + 8{y^3} = \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right).\)
=> Chọn đáp án B.