Trang chủ Lớp 9 SBT Toán 9 - Cánh diều Bài 22 trang 109 SBT toán 9 – Cánh diều tập 1:...

Bài 22 trang 109 SBT toán 9 - Cánh diều tập 1: Cho đường tròn (O; R) và điểm A nằm trên đường tròn...

Áp dụng tỉ số lượng giác trong tam giác MBO để tính số đo góc MBO, từ đó tính được số đo góc MBN. Trả lời Giải bài 22 trang 109 sách bài tập toán 9 - Cánh diều tập 1 - Bài 3. Tiếp tuyến của đường tròn . Cho đường tròn (O; R) và điểm A nằm trên đường tròn.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho đường tròn (O; R) và điểm A nằm trên đường tròn. Lấy điểm B sao cho A là trung điểm của đoạn thẳng OB. Kẻ hai tiếp tuyến BM, BN của đường tròn (O).

a) Tính số đo góc MBN và độ dài đoạn thẳng BM theo R.

b) Tứ giác AMON là hình gì ? Vì sao?

c) Tính độ dài đoạn thẳng OH theo R với H là giao điểm của OA và MN.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Áp dụng tỉ số lượng giác trong tam giác MBO để tính số đo góc MBO, từ đó tính được số đo góc MBN.

Tính BM: Áp dụng định lý Pythagore trong tam giác OBM.

b) Chứng minh 2 tam giác AMO và ANO đều.

c) Áp dụng tỉ số lượng giác trong tam giác MHO để tính OH.

Answer - Lời giải/Đáp án

a) Ta có A là trung điểm của đoạn thẳng OB nên OB=2OA=2R.

Do BM, BN là 2 tiếp tuyến của (O) nên MOBM,NOBN hay ^BMO=^BNO=90^MBO=^NBO=^MBN2; ^MOB=^NOB.

Advertisements (Quảng cáo)

Xét tam giác MBO vuông tại M có

sin^MBO=MOBO=R2R=12, do đó ^MBO=30.

Ta có ^MBO=^MBN2 hay ^MBN=2^MBO=2.30=60.

Áp dụng định lý Pythagore trong tam giác vuông OBM có:

BM=BO2MO2=(2R)2R2=R3

b) Xét tam giác vuông MOB có ^MBO=30 nên ^MOB=90^MBO=9030=60

^MOB=^NOB nên ^NOB=60.

Xét tam giác AMO có AO=MO(=R)^MOB=60 nên tam giác AMO đều, suy ra AM=MO.

Xét tam giác ANO có AO=NO(=R)^NOB=60 nên tam giác ANO đều, suy ra AN=NO.

OM=ON(=R) nên OM=ON=AM=AN.

Vậy AMON là hình thoi.

c) Vì AMON là hình thoi nên 2 đường chéo AO và MN vuông góc với nhau.

Xét tam giác vuông MHO ta có:

cos^MOH=OHMO hay OH=cos^MOH.MO=cos60.R=R2.

Advertisements (Quảng cáo)