Bước 1: Chứng minh AC=AD. Bước 2: Chứng minh góc ABC và góc ABD vuông. Bước 3. Hướng dẫn giải Giải bài 33 trang 116 sách bài tập toán 9 - Cánh diều tập 1 - Bài 4. Góc ở tâm. Góc nội tiếp . Cho hai đường tròn (O; R) và (O’; R) cắt nhau tại hai điểm A, B.
Câu hỏi/bài tập:
Cho hai đường tròn (O; R) và (O’; R) cắt nhau tại hai điểm A, B. Kẻ đường kính AC của đường tròn (O) và đường kính AD của đường tròn (O’). So sánh độ dài dây BC của đường tròn (O) và độ dài dây BD của đường tròn (O’)
Bước 1: Chứng minh AC=AD.
Bước 2: Chứng minh góc ABC và góc ABD vuông.
Bước 3: Chứng minh ΔABC=ΔABD.
Advertisements (Quảng cáo)
Do 2 đường tròn (O) và (O’) có cùng bán kính R nên 2 đường kính AC=AD.
Góc ABC và góc ABD lần lượt là góc nội tiếp chắn nửa đường tròn tâm O và tâm O’ nên ^ABC=^ABD=90∘.
Xét tam giác ABC và ABD có:
^ABC=^ABD;
AC=AD;
AB chung
Suy ra ΔABC=ΔABD (cạnh huyền – cạnh góc vuông).
Do đó CB=DB.
Vậy độ dài dây BC của đường tròn (O) bằng độ dài dây BD của đường tròn (O’).