Rút gọn và tính giá trị biểu thức A = \(\frac{{x - 16}}{{x + \sqrt x + 1}}:\frac{{\sqrt x + 4}}{{x\sqrt x - 1}}\) tại x = 0,64.
Dựa vào: \(\frac{{\sqrt a }}{{\sqrt b }} = \frac{{\sqrt a .\sqrt b }}{{{{\left( {\sqrt b } \right)}^2}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
\(\sqrt {\frac{a}{b}} = \sqrt {\frac{{ab}}{{{b^2}}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
Advertisements (Quảng cáo)
Ta có:
\(A =\frac{{x - 16}}{{x + \sqrt x + 1}}:\frac{{\sqrt x + 4}}{{x\sqrt x - 1}}\\= \frac{{{{\left( {\sqrt x } \right)}^2} - {4^2}}}{{x + \sqrt x + 1}}.\frac{{{{\left( {\sqrt x } \right)}^3} - 1}}{{\sqrt x + 4}}\\= \frac{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}{{x + \sqrt x + 1}}.\frac{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}{{\sqrt x + 4}} \\= \left( {\sqrt x + 4} \right)\left( {\sqrt x - 1} \right)\\ = x - 5\sqrt x + 4\)
Tại x = 0,64, ta được:
\(A = 0,64 - 5\sqrt {0,64} + 4 = 0,64 - 4 + 4 = 0,64\)