Từ điểm A nằm ngoài đường tròn (O; 12 cm) vẽ hai tiếp tuyến của (O) tại B, C. Đoạn thẳng OA cắt (O) tại D. Cho biết \(\widehat {BAC} = {40^o}\). Tính:
a) Số đo \(\widehat {OCD}\).
b) Độ dài các đoạn thẳng AC, AB, AO.
(Làm tròn kết quả đến hàng đơn vị của mét)
Dựa vào: Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.
Advertisements (Quảng cáo)
Vận dụng tỉ số lượng giác của góc nhọn và hệ thức giữa cạnh và góc giúp giải tam giác vuông thuận lợi và nhanh chóng.
a) Ta có AO là tia phân giác của \(\widehat {BAC}\), suy ra \(\widehat {OAC} = \frac{{\widehat {BAC}}}{2} = {20^o}\). Tam giác OAC vuông tại C, suy ra \(\widehat {AOC} = {90^o} - \widehat {OAC} = {70^o}\) hay \(\widehat {DOC} = {70^o}\). Trong tam giác ODC cân tại O, ta có:
\(\widehat {ODC} = \frac{{{{180}^o} - \widehat {COD}}}{2} = \frac{{{{180}^o} - {{70}^o}}}{2} = {55^o}\).
b) AB = AC = OC. tan \(\widehat {AOC}\) = 12.tan 70o \( \approx \)33 (cm).
OA = \(\frac{{OC}}{{\sin \widehat {OAC}}} = \frac{{12}}{{\sin {{20}^o}}} \approx 35(cm)\).