Rút gọn các biểu thức (biết a > 0, b > 0):
a) \(\sqrt {4a} + \sqrt {25a} - 6\sqrt {\frac{a}{4}} \)
b) \(b\sqrt {\frac{a}{b}} + a\sqrt {\frac{b}{a}} \).
Dựa vào:
\(\frac{{\sqrt a }}{{\sqrt b }} = \frac{{\sqrt a .\sqrt b }}{{{{\left( {\sqrt b } \right)}^2}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
Advertisements (Quảng cáo)
\(\sqrt {\frac{a}{b}} = \sqrt {\frac{{ab}}{{{b^2}}}} = \frac{{\sqrt {ab} }}{b}(a \ge 0,b > 0)\)
a) \(\sqrt {4a} + \sqrt {25a} - 6\sqrt {\frac{a}{4}} \)
\(= 2\sqrt a + 5\sqrt a - 6\frac{{\sqrt a }}{2}\\ = 2\sqrt a + 5\sqrt a - 3\sqrt a \\ = 4\sqrt a .\)
b) \(b\sqrt {\frac{a}{b}} + a\sqrt {\frac{b}{a}} \)
\(= b\sqrt {\frac{{ab}}{{{b^2}}}} + a\sqrt {\frac{{ab}}{a}} \\ = \sqrt {ab} + \sqrt {ab} = 2\sqrt {ab} .\)