a) Trục căn thức ở mẫu của biểu thức \(\frac{{3 + \sqrt 2 }}{{2\sqrt 2 - 1}}\).
b) Tính giá trị biểu thức \(P = x\left( {{x^4} - 6{x^2} + 1} \right)\) tại \(x = \frac{{3 + \sqrt 2 }}{{2\sqrt 2 - 1}}\).
Với các biểu thức A, B, C mà \(A \ge 0,A \ne {B^2}\) ta có \(\frac{C}{{\sqrt A - B}} = \frac{{C\left( {\sqrt A + B} \right)}}{{A - {B^2}}}\).
a) \(\frac{{3 + \sqrt 2 }}{{2\sqrt 2 - 1}} \)
Advertisements (Quảng cáo)
\(= \frac{{\left( {3 + \sqrt 2 } \right)\left( {2\sqrt 2 + 1} \right)}}{{\left( {2\sqrt 2 - 1} \right)\left( {2\sqrt 2 + 1} \right)}} \\= \frac{{2\sqrt 2 \left( {3 + \sqrt 2 } \right) + 3 + \sqrt 2 }}{{{{\left( {2\sqrt 2 } \right)}^2} - {1^2}}} \\= \frac{{6\sqrt 2 + 4 + 3 + \sqrt 2 }}{7} \\= \frac{{7\sqrt 2 + 7}}{7}\\= \frac{{7\left( {\sqrt 2 + 1} \right)}}{7} \\= \sqrt 2 + 1\)
b) Ta có: \(P = x\left[ {{{\left( {{x^2} - 3} \right)}^2} - 8} \right]\)
Với \(x = \frac{{3 + \sqrt 2 }}{{2\sqrt 2 - 1}} = \sqrt 2 + 1\) thì:
\({x^2} - 3 = {\left( {\sqrt 2 + 1} \right)^2} - 3 \\= {\left( {\sqrt 2 } \right)^2} + 2\sqrt 2 + 1 - 3 \\= 2\sqrt 2 .\)
Do đó,
\(P = \left( {\sqrt 2 + 1} \right)\left[ {{{\left( {2\sqrt 2 } \right)}^2} - 8} \right] \)\(= \left( {\sqrt 2 + 1} \right).0 = 0\)