Trang chủ Lớp 9 SBT Toán 9 - Kết nối tri thức Câu 9 trang 19 SBT Toán 9 Kết nối tri thức: Tìm...

Câu 9 trang 19 SBT Toán 9 Kết nối tri thức: Tìm điều kiện của tham số m để phương trình x^2 - 2 m - 2 x + m^2 - 3m + 5 = 0...

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Hướng dẫn trả lời Câu hỏi Câu 9 trang 19 SBT Toán 9 Kết nối tri thức - Bài tập cuối chương VI.

Câu hỏi/bài tập:

Tìm điều kiện của tham số m để phương trình \({x^2} - 2\left( {m - 2} \right)x + {m^2} - 3m + 5 = 0\) có hai nghiệm phân biệt.

A. \(m \le - 1\).

B. \(m = - 1\).

C. \(m > - 1\).

D. \(m < - 1\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Nếu \(\Delta ‘ > 0\) thì phương trình có hai nghiệm phân biệt.

Answer - Lời giải/Đáp án

Phương trình đã cho có hai nghiệm phân biệt khi \(\Delta ‘ > 0\) nên \({\left[ { - \left( {m - 2} \right)} \right]^2} - 1.\left( {{m^2} - 3m + 5} \right) > 0\)

\({m^2} - 4m + 4 - {m^2} + 3m - 5 > 0\)

\( - m - 1 > 0\)

\(m < - 1\)

Chọn D

Advertisements (Quảng cáo)