Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 1.1, 1.2 trang 100 SBT Toán 9 Tập 2:Đọc tên các...

Câu 1.1, 1.2 trang 100 SBT Toán 9 Tập 2:Đọc tên các góc ở tâm có số đo nhỏ hơn...

a) Đọc tên các góc ở tâm có số đo nhỏ hơn 180.. Câu 1.1, 1.2 trang 100 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 1: Góc ở tâm. Số đo cung

Câu 1.1 trang 100 Sách Bài Tập (SBT) Toán 9 Tập 2

Cho hình bs.4. Biết \(\overparen{DOA}\)= 1200, OA vuông góc với OC, OB vuông góc với OD.

a) Đọc tên các gốc ở tâm có số đo nhỏ hơn 1800.

b) Cho biết số đo của mỗi góc ở tâm tìm được ở câu trên.

c) Cho biết tên của các cặp cung có số đo bằng nhau (nhỏ hơn 1800).

d) So sánh hai cung nhỏ AB và BC.

Giải

 

a) Các góc ở tâm có số đo nhỏ hơn 1800 là:

\(\widehat {AOB},\widehat {AOC},\widehat {AOD},\widehat {BOC},\widehat {BOD},\widehat {COD}\)

b) \(OA \bot OC \Rightarrow \widehat {AOC} = {90^0}\)

\(OB \bot OD \Rightarrow \widehat {BOD} = {90^0}\)

\(\widehat {AOB} + \widehat {BOD} = \widehat {AOD}\)

\( \Rightarrow \widehat {AOB} = \widehat {AOD} - \widehat {BOD} = {120^0} - {90^0} = {30^0}\)

\(\widehat {AOC} + \widehat {COD} = \widehat {AOD}\)

\( \Rightarrow \widehat {COD} = \widehat {AOD} - \widehat {AOC} = {120^0} - {90^0} = {30^0}\)

\(\widehat {AOB} + \widehat {BOC} = \widehat {AOC}\)

\( \Rightarrow \widehat {BOC} = \widehat {AOC} - \widehat {AOB} = {90^0} - {30^0} = {60^0}\)

c) Các cung có số đo bằng nhau nhỏ hơn 1800 là:

\(\overparen{AB}\) = \(\overparen{CD}\); \(\overparen{AC}\) = \(\overparen{BD}\)

d) sđ \(\overparen{AB}\)=\( = \widehat {AOB} = {30^0}\)

sđ \(\overparen{BC}\)\( = \widehat {BOC} = {60^0}\)

Suy ra: sđ \(\overparen{BC}\) gấp đôi sđ \(\overparen{AB}\)

Câu 1.2 trang 100 Sách Bài Tập (SBT) Toán 9 Tập 2

Cho đường tròn tâm O đường kính AB. Các điểm C, D, E cùng thuộc một cung AB sao cho sđ \(\overparen{BC}\) = sđ \(\overparen{BA}\) ; sđ \(\overparen{BD}\) = \({1 \over 2}\) sđ \(\overparen{BA}\); sđ \(\overparen{BE}\) = \({2 \over 3}\) sđ \(\overparen{BA}\).

a) Đọc tên các góc ở tâm có số đo không lớn hơn 1800.

b) Cho biết số đo của mỗi góc ở tâm tìm được ở câu trên.

c) Cho biết tên của các cặp cung có số đo bằng nhau (nhỏ hơn 1800).

d) So sánh hai cung nhỏ AE và BC.

Giải

a) Các góc ở tâm có số đo không quá 1800 là:

Advertisements (Quảng cáo)

\(\widehat {AOB},\widehat {AOC},\widehat {AOD},\widehat {AOE},\widehat {BOC},\widehat {BOD},\)

\(\widehat {BOE},\widehat {COD},\widehat {COE},\widehat {DOE}\)

b) \(\widehat {AOB} = {180^0}\)

sđ \(\overparen{AB}\) = 1800

Ta có: sđ \(\overparen{BC}\) = \( = {1 \over 6}\) sđ \(\overparen{AB}\)

                        = \({1 \over 6}{.180^0}\) = 300

\( \Rightarrow \widehat {BOC} = \) sđ \(\overparen{BC}\) = 300

Ta có: sđ \(\overparen{BD}\) \( = {1 \over 2}\)sđ \(\overparen{AB}\)

                        = \({1 \over 2}{.180^0} = {90^0}\)

\( \Rightarrow \widehat {BOD} = \)sđ \(\overparen{BD}\) = \({90^0}\)

Ta có: sđ \(\overparen{BE}\) \( = {2 \over 3}\) sđ \(\overparen{BA}\)

                        \( = {2 \over 3}{.180^0} = {120^0}\)

\( \Rightarrow \widehat {BOE} = \) sđ \(\overparen{BE}\) = 1200

\(\widehat {BOC} + \widehat {COE} = \widehat {BOE}\)

\( \Rightarrow \widehat {COE} = \widehat {BOE} - \widehat {BOC}\)

            \( = {120^0} - {30^0} = {90^0}\)

\(\widehat {AOE} + \widehat {BOE} = \widehat {AOB}\)

\( \Rightarrow \widehat {AOE} = \widehat {AOB} - \widehat {BOE}\)

            \( = {180^0} - {120^0} = {60^0}\)

\(\widehat {AOD} = \widehat {BOD} = {1 \over 2}\widehat {AOB} = {90^0}\)

\(\widehat {BOC} + \widehat {COD} = \widehat {BOD}\)

\( \Rightarrow \widehat {COD} = \widehat {BOD} - \widehat {BOC}\)

               = \({90^0} - {30^0} = {60^0}\)

\(\widehat {COD} + \widehat {DOE} = \widehat {COE}\)

\( \Rightarrow \widehat {DOE} = \widehat {COE} - \widehat {COD}\)

            \( = {90^0} - {60^0} = {30^0}\)

c) Các cung có số đo nhỏ hơn 1800 bằng nhau.

\(\overparen{BC}\)= \(\overparen{DE}\); \(\overparen{AE}\) = \(\overparen{CD}\); \(\overparen{AD}\) = \(\overparen{BD}\).

\(\overparen{AC}\) = \(\overparen{BE}\); \(\overparen{AD}\) = \(\overparen{CE}\); \(\overparen{CE}\) = \(\overparen{BD}\).

d) sđ \(\overparen{AE}\) \( = \widehat {AOE} = {60^0}\)

sđ \(\overparen{BC}\)\( = \widehat {BOC} = {30^0}\)

Ta có số đo của cung \(\overparen{AE}\) gấp đôi số đo của cung \(\overparen{BC}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)