Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 104 trang 23 SBT Toán 9 Tập 1: Tìm số x...

Câu 104 trang 23 SBT Toán 9 Tập 1: Tìm số x nguyên để biểu thức...

Tìm số x nguyên để biểu thức .... Câu 104 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1 - Ôn tập chương I

Tìm số x nguyên để biểu thức \({{\sqrt x  + 1} \over {\sqrt x  - 3}}\) nhận giá trị nguyên.

Ta có:

\(\eqalign{
& {{\sqrt x + 1} \over {\sqrt x - 3}} = {{\sqrt x - 3 + 4} \over {\sqrt x - 3}} \cr
& = 1 + {4 \over {\sqrt x - 3}} \cr}\)                   

Để \(1 + {4 \over {\sqrt x  - 3}}\) nhận giá trị nguyên thì \({4 \over {\sqrt x  - 3}}\) phải có giá trị nguyên.

Vì x nguyên nên \(\sqrt x \) là số nguyên hoặc số vô tỉ.

*Nếu \(\sqrt x \) là số vô tỉ thì \(\sqrt x  - 3\) là số vô tỉ nên \({4 \over {\sqrt x  - 3}}\) không có giá trị nguyên.

Advertisements (Quảng cáo)

Trường hợp này không có giá trị nào của x để biểu thức nhận giá trị nguyên.

*Nếu \(\sqrt x \) là số nguyên thì \(\sqrt x  - 3\) là số nguyên. Vậy để \({4 \over {\sqrt x  - 3}}\) nguyên thì \(\sqrt x  - 3\) phải là ước của 4.

Đồng thời \(x \ge 0\) suy ra: \(\sqrt x  \ge 0\)

Ta có: Ư(4) = \({\rm{\{ }} - 4; - 2; - 1;1;2;4{\rm{\} }}\)

Suy ra: \(\sqrt x  - 3 =  - 4 \Rightarrow \sqrt x  =  - 1\) (loại)

\(\eqalign{
& \sqrt x - 3 = - 2 \Rightarrow \sqrt x = 1 \Rightarrow x = 1 \cr
& \sqrt x - 3 = - 1 \Rightarrow \sqrt x = 2 \Rightarrow x = 4 \cr
& \sqrt x - 3 = - 1 \Rightarrow \sqrt x = 4 \Rightarrow x = 16 \cr
& \sqrt x - 3 = 1 \Rightarrow \sqrt x = 4 \Rightarrow x = 16 \cr
& \sqrt x - 3 = 2 \Rightarrow \sqrt x = 5 \Rightarrow x = 25 \cr
& \sqrt x - 3 = 4 \Rightarrow \sqrt x = 7 \Rightarrow x = 49 \cr} \) 

Vậy với \(x \in {\rm{\{ }}1;4;16;25;49\} \) thì biểu thức \({{\sqrt x  + 1} \over {\sqrt x  - 3}}\) nhận giá trị nguyên

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)