Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 106 trang 23 SBT Toán lớp 9 Tập 1: Tìm điều...

Câu 106 trang 23 SBT Toán lớp 9 Tập 1: Tìm điều kiện để A có nghĩa...

Tìm điều kiện để A có nghĩa. Câu 106 trang 23 Sách Bài Tập (SBT) Toán 9 Tập 1 - Ôn tập chương I

Cho biểu thức

\(A = {{{{\left( {\sqrt a  + \sqrt b } \right)}^2} - 4\sqrt {ab} } \over {\sqrt a  - \sqrt b }} - {{a\sqrt b  + b\sqrt a } \over {\sqrt {ab} }}.\)

a)      Tìm điều kiện để A có nghĩa.

b)      Khi A có nghĩa , chứng tỏ giá trị của A không phụ thuộc vào a.

a) Biểu thức A có nghĩa khi và chỉ khi :

Advertisements (Quảng cáo)

\(\left\{ \matrix{
a \ge 0 \hfill \cr
b \ge 0 \hfill \cr
\sqrt a - \sqrt b \ne 0 \hfill \cr
\sqrt {ab} \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a \ge 0 \hfill \cr
b \ge 0 \hfill \cr
a \ne b \hfill \cr
ab \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
a \ge 0 \hfill \cr
b \ge 0 \hfill \cr
a \ne b \hfill \cr} \right.\)

Vậy \(a \ge 0,b \ge 0\) và \(a \ne b\) thì A có nghĩa.

b) Ta có :

\(\eqalign{
& A = {{{{\left( {\sqrt a + \sqrt b } \right)}^2} - 4\sqrt {ab} } \over {\sqrt a - \sqrt b }} - {{a\sqrt b + b\sqrt a } \over {\sqrt {ab} }} \cr
& = {{\sqrt {{a^2}} + 2\sqrt {ab} + \sqrt {{b^2}} - 4\sqrt {ab} } \over {\sqrt a - \sqrt b }} - {{\sqrt {{a^2}b} + \sqrt {a{b^2}} } \over {\sqrt {ab} }} \cr
& = {{\sqrt {{a^2}} - 2\sqrt {ab} + \sqrt {{b^2}} } \over {\sqrt a - \sqrt b }} - {{\sqrt {ab} (\sqrt a + \sqrt b )} \over {\sqrt {ab} }} \cr
& = {{{{\left( {\sqrt a - \sqrt b } \right)}^2}} \over {\sqrt a - \sqrt b }} - \left( {\sqrt a + \sqrt b } \right) \cr
& = \sqrt a - \sqrt b - \sqrt a - \sqrt b = - 2\sqrt b \cr}\)

Vậy giá trị của A không phu thuộc vào a.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)