Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 31 trang 161 SBT Toán 9 Tập 1: Cho đường tròn...

Câu 31 trang 161 SBT Toán 9 Tập 1: Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các...

Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng. Câu 31 trang 161 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây

Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng:

a)      OC là tia phân giác của góc AOB.

b)      OC vuông góc với AB.

a) Kẻ OH ⊥ AM, OK ⊥ BN

Ta có: AM = BN (gt)

Suy ra: OH = OK (hai dây bằng nhau cách đều tâm)

Xét hai tam giác OCH và OCK, ta có:

\(\widehat {OHC} = \widehat {OKC} = 90^\circ \)

         OC chung

         OH = OK (chứng minh trên)

Advertisements (Quảng cáo)

Suy ra:  ∆OCH = ∆OCK (cạnh huyền, cạnh góc vuông)

\(\widehat {{O_1}} = \widehat {{O_2}}\)

Xét hai tam giác OAH và OBK, ta có:

\(\widehat {OHA} = \widehat {OKB} = 90^\circ \)

          OA = OB

          OH = OK ( chứng minh trên)

Suy ra: ∆OAH = ∆OBK (cạnh huyền, cạnh góc vuông)

\(\widehat {{O_3}} = \widehat {{O_4}}\)

Suy ra:  \(\widehat {{O_1}} + \widehat {{O_3}} = \widehat {{O_2}} + \widehat {{O_4}}\) hay \(\widehat {AOC} = \widehat {BOC}\)

Vậy OC là tia phân giác của \(\widehat {AOB}\)

b) Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân).

Suy ra: OC ⊥ AB.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)