Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 33* trang 161 SBT Toán 9 Tập 1: Cho đường tròn...

Câu 33* trang 161 SBT Toán 9 Tập 1: Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên...

Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB >CD, chứng minh rằng MH > MK.. Câu 33* trang 161 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây

Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB  >CD,  chứng minh rằng MH > MK.

Ta có:  HA = HB (gt)

Suy ra:  OH ⊥ AB (đường kính dây cung)

Lại có:   KC = KD (gt)

Suy ra:   OK ⊥ CD ( đường kính dây cung)

Mà  AB > CD (gt)

Nên  OK > OH ( dây lớn hơn gần tâm hơn)

Advertisements (Quảng cáo)

Áp dụng định lí Pi-ta-go vào tam giác vuông OHM ta có:

OM2=OH2+HM2

Suy ra:     HM2=OM2OH2      (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông OKM, ta có:

OM2=OK2+KM2

Suy ra:    KM2=OM2OK2                  (2)

Mà  OH < OK (cmt)            (3)

Từ (1), (2) và (3) suy ra: HM2>KM2 hay HM > KM.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)