Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 50 trang 108 SBT Toán 9 Tập 2: Tính các cạnh...

Câu 50 trang 108 SBT Toán 9 Tập 2: Tính các cạnh của tam giác ABC và đường cao AH của nó theo...

Tính các cạnh của tam giác ABC và đường cao AH của nó theo R.. Câu 50 trang 108 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

Trong đường tròn (O; R) cho một dây AB bằng cạnh hình vuông nội tiếp và dây BC bằng cạnh tam giác đều nội tiếp (Điểm C và điểm A ở cùng một phía đối với BO). Tính các cạnh của tam giác ABC và đường cao AH của nó theo R.

Giải

Dây AB bằng cạnh hình vuông nội tiếp đường tròn (O; R) nên AB = \(R\sqrt 2 \) và cung \(\overparen{AB}\) nhỏ có  sđ \(\overparen{AB}\).

Dây BC bằng cạnh hình tam giác đều nội tiếp đường tròn (O; R) nên BC = \(R\sqrt 3 \) và cung nhỏ \(\overparen{BC}\) nhỏ có  sđ \(\overparen{BC}\) \( = 120^\circ \).

\( \Rightarrow \) sđ \(\overparen{AC}\) = sđ \(\overparen{BC}\) - sđ \(\overparen{AB}\) = \(120^\circ  - 90^\circ  = 30^\circ \)

Advertisements (Quảng cáo)

\( \Rightarrow \widehat {ABC} = {1 \over 2}\) sđ \(\overparen{AC}\) = 150(tính chất góc nội tiếp)

Trong ∆AHB có \(\widehat {AHB} = 90^\circ \)

\( \Rightarrow AH = AB.\sin \widehat {ABH} = R\sqrt 2 .\sin 15^\circ  \approx 0,36R\)

Trong ∆AHC có \(\widehat {AHC} = 90^\circ \)

\widehat {ACB} = {1 \over 2}\) sđ \(\overparen{AB}\) = 450 (tính chất góc nội tiếp)

\(AC = {{AH} \over {\sin \widehat {ACH}}} = {{AH} \over {\sin 45^\circ }} \approx {{0,36R} \over {\sin 45^\circ }} \approx 0,51R\)    

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)