Trang chủ Lớp 9 SBT Toán lớp 9 Câu 50 trang 15 SBT Toán 9 tập 2: Tính x và...

Câu 50 trang 15 SBT Toán 9 tập 2: Tính x và y....

Tính x và y.. Câu 50 trang 15 Sách bài tập (SBT) Toán 9 tập 2 – Bài 5: Giải bài toán bằng cách lập hệ phương trình

Advertisements (Quảng cáo)

Cho hình vuông ABCD cạnh y (cm). Điểm E thuộc cạnh AB. Điểm G thuộc tia AD sao cho $AG = AD + {3 \over 2}EB.\). Dựng hình chữ nhật GAEF. Đặt EB = 2x (cm). Tính x và y để diện tích của hình chữ nhật bằng diện tích hình vuông và ngũ giác ABCFG có chu vi bằng $100 + 4\sqrt {13} \) (cm)

Theo giả thiết ta có: EB = 2x (cm)

Điều kiện: y > 2x > 0

AE = AB – EB = y – 2x (cm)

AG = AD + DG \( = y + {3 \over 2}EB = y + {3 \over 2}.2x = y + 3x\) (cm)

Diện tích hình chữ nhật bằng diện tích hình vuông, ta có phương trình:

\(\left( {y – 2x} \right)\left( {y + 3x} \right) = {y^2}\)

Mặt khác theo định lí Pitago ta có:

\(FC = \sqrt {E{B^2} + D{G^2}}  = \sqrt {4{x^2} + 9{x^2}}  = x\sqrt {13} \) (cm)

Advertisements (Quảng cáo)

Chu vi của ngũ giác ABCFG bằng: 

\(\eqalign{
& AB + BC + CF + FG + GA \cr
& = AB + BC + CF + FG + GD + AD \cr
& = y + y + x\sqrt {13} + y – 2x + 3x + y \cr
& = x\left( {1 + \sqrt {13} } \right) + 4y \cr} \)

Chu vi ngũ giác bằng \(100 + 4\sqrt {13} \) (cm), ta có phương trình:

\(x\left( {1 + \sqrt {13} } \right) + 4y = 100 + 4\sqrt {13} \)

Ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{\left( {y – 2x} \right)\left( {y + 3x} \right) = {y^2}} \cr
{x\left( {1 + \sqrt {13} } \right) + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{{y^2} + 3xy – 2xy – 6{x^2} = {y^2}} \cr 
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{xy – 6{x^2} = 0} \cr 
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x\left( {y – 6x} \right) = 0} \cr 
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y – 6x = 0} \cr 
{\left( {1 + \sqrt {13} } \right)x + 4y = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr 
{\left( {1 + \sqrt {13} } \right)x + 4.6x = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr 
{\left( {25 + \sqrt {13} } \right)x = 100 + 4\sqrt {13} } \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr 
{x = {{4\left( {25 + \sqrt {13} } \right)} \over {25 + \sqrt {13} }}} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 6x} \cr 
{x = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 24} \cr 
{x = 4} \cr} } \right. \cr} \)

Giá trị x = 4 và y = 24 thỏa mãn điều kiện bài toán.

Vậy x = 4 (cm); y = 24 (cm).