Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa):
a) \(\frac{{6\sqrt 2 + 3}}{{1 + 2\sqrt 2 }}\);
b) \(\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}}\);
c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }}\);
d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x + \sqrt y }}\).
a) Phân tích tử số của phần thức thành \(3\left( {1 + 2\sqrt 2 } \right)\), từ đó rút gọn biểu thức.
b) Phân tích tử số của phần thức thành \(\sqrt 5 \left( {\sqrt 3 - 1} \right)\), từ đó rút gọn biểu thức.
c) Phân tích tử số của phần thức thành \(\sqrt m \left( {\sqrt m - 2} \right)\), từ đó rút gọn biểu thức.
d) Phân tích tử số của phần thức thành \(\sqrt x \left( {3\sqrt x + \sqrt y } \right)\), từ đó rút gọn biểu thức.
a) \(\frac{{6\sqrt 2 + 3}}{{1 + 2\sqrt 2 }} = \frac{{3\left( {1 + 2\sqrt 2 } \right)}}{{1 + 2\sqrt 2 }} = 3\);
b) \(\frac{{\sqrt {15} - \sqrt 5 }}{{\sqrt 3 - 1}} = \frac{{\sqrt 5 .\sqrt 3 - \sqrt 5 }}{{\sqrt 3 - 1}} = \frac{{\sqrt 5 \left( {\sqrt 3 - 1} \right)}}{{\sqrt 3 - 1}} = \sqrt 5 \);
c) \(\frac{{m - 2\sqrt m }}{{2 - \sqrt m }} = \frac{{\sqrt m \left( {\sqrt m - 2} \right)}}{{ - \left( {\sqrt m - 2} \right)}} = - \sqrt m \);
d) \(\frac{{3x + \sqrt {xy} }}{{3\sqrt x + \sqrt y }} = \frac{{\sqrt x \left( {3\sqrt x + \sqrt y } \right)}}{{3\sqrt x + \sqrt y }} = \sqrt x \).