Để loại bỏ x% một loại tảo độc khỏi một hồ nước, người ta ước tính chi phí cần bỏ ra là
\(C\left( x \right) = \frac{{50x}}{{100 - x}}\) (triệu đồng), với \(0 \le x < 100.\)
Nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được bao nhiêu phần trăm loại tảo độc đó?
Chi phí bỏ ra là 450 triệu đồng nên ta có \(C\left( x \right) = 450\) từ đó ta có phương trình chứa ẩn ở mẫu, ta giải phương trình đối chiếu điều kiện rồi kết luận bài toán.
Nếu bỏ ra 450 triệu đồng ta sẽ có \(C\left( x \right) = 450\) từ đó ta có phương trình \(\frac{{50x}}{{100 - x}} = 450\)
Quy đồng mẫu số các phân số ta được \(\frac{{50x}}{{100 - x}} = \frac{{450\left( {100 - x} \right)}}{{100 - x}}\)
Khử mẫu ta được phương trình \(50x = 450\left( {100 - x} \right)\)
\(\begin{array}{l}50x = 45000 - 450x\\50x + 450x = 45000\\500x = 45000\\x = 90\left( {t/m} \right)\end{array}\)
Vậy nếu bỏ ra 450 triệu đồng, người ta có thể lọai bỏ được 90% loại tảo độc đó.