Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Bài 4.8 trang 78 Toán 9 Kết nối tri thức tập 1:...

Bài 4.8 trang 78 Toán 9 Kết nối tri thức tập 1: Giải tam giác ABC vuông tại A có \(BC = a, AC = b, AB = c...

Dựa vào tỉ số lượng giác giữa các cạnh ta tính được góc B hoặc góc C. Giải bài tập 4.8 trang 78 SGK Toán 9 tập 1 - Kết nối tri thức Bài 12. Một số hệ thức giữa cạnh - góc trong tam giác vuông và ứng dụng. Giải tam giác ABC vuông tại A có \(BC = a, AC = b, AB = c, \) trong các trường hợp: a) \(a = 21, b = 18;\)b) \(b = 10, \widehat C = {30^0};\)c) \(c = 5, b = 3...

Question - Câu hỏi/Đề bài

Giải tam giác ABC vuông tại A có \(BC = a,AC = b,AB = c,\) trong các trường hợp:

a) \(a = 21,b = 18;\)

b) \(b = 10,\widehat C = {30^0};\)

c) \(c = 5,b = 3.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Dựa vào tỉ số lượng giác giữa các cạnh ta tính được góc B hoặc góc C, và các biểu thức liên quan giữa cạnh và góc chưa biết kết hợp thêm định lý Pythagore để tính cạnh còn lại khi biết hai cạnh.

Answer - Lời giải/Đáp án

a) \(a = 21,b = 18;\)

Tam giác ABC vuông tại A, ta có: \(A{B^2} + A{C^2} = B{C^2}\) (định lý Pythagore)

Thay số ta có: \(A{B^2} + {18^2} = {21^2}\) hay \(AB = \sqrt {{{21}^2} - {{18}^2}} = 3\sqrt {13} \) (vì \(AB > 0\))

Advertisements (Quảng cáo)

Ta có \(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{{18}}{{21}} = \frac{6}{7}\) nên \(\widehat B \approx {59^0}\)

Mà \(\widehat B + \widehat C = {90^0}\) nên \(\widehat C = {90^0} - \widehat B \approx {90^0} - {59^0} = {31^0}\)

b) \(b = 10,\widehat C = {30^0};\)

Tam giác ABC vuông tại A, ta có \(\tan \widehat C = \frac{{AC}}{{AB}}\) hay \(\tan {30^0} = \frac{{10}}{{AB}}\) suy ra \(AB = \frac{{10}}{{\tan {{30}^0}}} = 10\sqrt 3 \)

\(\sin \widehat C = \frac{{AC}}{{BC}}\) hay \(\sin {30^0} = \frac{{10}}{{BC}}\) suy ra \(BC = \frac{{10}}{{\sin {{30}^0}}} = 20\)

Mà \(\widehat B + \widehat C = {90^0}\) nên \(\widehat C = {90^0} - \widehat B = {90^0} - {30^0} = {60^0}\)

c) \(c = 5,b = 3.\)

Tam giác ABC vuông tại A, ta có: \(A{B^2} + A{C^2} = B{C^2}\) (định lý Pythagore)

Thay số ta có: \(B{C^2} = {5^2} + {3^2} = 34\) hay \(BC = \sqrt {34} \) (vì \(BC > 0\))

Ta có \(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{3}{{\sqrt {34} }}\) nên \(\widehat B \approx {30^0}58’\)

Mà \(\widehat B + \widehat C = {90^0}\) nên \(\widehat C = {90^0} - \widehat B \approx {90^0} - {30^0}57′ = {59^0}02’\)