Gọi H là hình chiếu của M trên AB. Khi đó khoảng cách từ M đến AB bằng độ dài đoạn MH. Xét tam giác MHO vuông tại H có. Hướng dẫn giải bài tập 5.5 trang 90 SGK Toán 9 tập 1 - Kết nối tri thức Bài 14. Cung và dây của một đường tròn. Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó. Chứng minh rằng khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}...
Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó. Chứng minh rằng khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}.\)
Gọi H là hình chiếu của M trên AB.
Khi đó khoảng cách từ M đến AB bằng độ dài đoạn MH.
Xét tam giác MHO vuông tại H có: \(MH \le MO = \frac{{AB
Advertisements (Quảng cáo)
Gọi H là hình chiếu của M trên AB.
Khi đó khoảng cách từ M đến AB bằng độ dài đoạn MH.
Xét tam giác MHO vuông tại H có: \(MH \le MO\)
Lại có: \(MO = \frac{{AB}}{2}\)(do AB là đường kính, OM là bán kính của đường tròn (O)).
Vậy \(MH \le \frac{{AB}}{2}.\)