Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Bài 6.10 trang 16 Toán 9 tập 2 – Kết nối tri...

Bài 6.10 trang 16 Toán 9 tập 2 - Kết nối tri thức: Không cần giải phương trình, hãy xác định các hệ số a, b, c...

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Phân tích và lời giải bài tập 6.10 trang 16 SGK Toán 9 tập 2 - Kết nối tri thức - Bài 19. Phương trình bậc hai một ẩn. Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau...

Question - Câu hỏi/Đề bài

Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau:

a) \(11{x^2} + 13x - 1 = 0\);

b) \(9{x^2} + 42x + 49 = 0\);

c) \({x^2} - 2x + 3 = 0\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta = {b^2} - 4ac\)

Advertisements (Quảng cáo)

+ Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).

+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

+ Nếu \(\Delta < 0\) thì phương trình vô nghiệm.

Answer - Lời giải/Đáp án

a) Phương trình \(11{x^2} + 13x - 1 = 0\) có \(a = 11;b = 13;c = - 1\) và \(\Delta = {13^2} - 4.11.\left( { - 1} \right) = 213 > 0\) nên phương trình có hai nghiệm phân biệt.

b) Phương trình \(9{x^2} + 42x + 49 = 0\) có \(a = 9;b = 42;c = 49\) và \(\Delta = {42^2} - 4.49.9 = 0\) nên phương trình có nghiệm kép.

c) Phương trình \({x^2} - 2x + 3 = 0\) có \(a = 1;b = - 2;c = 3\) và \(\Delta = {\left( { - 2} \right)^2} - 4.3.1 = - 8 < 0\) nên phương trình vô nghiệm.

Advertisements (Quảng cáo)