Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Giải mục 3 trang 71, 72 Toán 9 Kết nối tri thức...

Giải mục 3 trang 71, 72 Toán 9 Kết nối tri thức tập 1: Hỏi góc đó có đúng tiêu chuẩn của dốc cho người đi xe lăn không?...

Phân tích và lời giải LT4, LT5, VD, TL mục 3 trang 71, 72 SGK Toán 9 tập 1 - Kết nối tri thức Bài 11. Tỉ số lượng giác của góc nhọn. Sử dụng MTCT tính các ti số lượng giác và làm tròn kết quả đến chữ số thập phân thứ ba... Hỏi góc đó có đúng tiêu chuẩn của dốc cho người đi xe lăn không?

Luyện tập4

Trả lời câu hỏi Luyện tập 4 trang 71

Sử dụng MTCT tính các ti số lượng giác và làm tròn kết quả đến chữ số thập phân thứ ba:

a) \(\sin {40^0}54′;\)

b) \(\cos {52^0}15′;\)

c) \(\tan {69^0}36’\)

d) \(\cot {25^0}18’\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để tính \(\sin {40^0}54’\) ta bấm:

Tương tự với cos và tan.

Tuy nhiên đối với cot thì ta có thể làm như sau: \(\cot {25^0}18′ = \frac{1}{{\tan {{25}^0}18′}}\) hoặc sử dụng tính chất hai góc phụ nhau có tan bằng cot.

Answer - Lời giải/Đáp án

a) \(\sin {40^0}54′;\)

Ta có: \(\sin {40^0}54′ = 0,6547408137 \approx 0,655\)

b) \(\cos {52^0}15′;\)

Ta có: \(\cos {52^0}15′ = 0,61221728 \approx 0,612\)

c) \(\tan {69^0}36’\)

Ta có: \(\tan {69^0}36′ = 2,688918967 \approx 2,689\)

d) \(\cot {25^0}18’\)

Ta có: \(\tan {25^0}18′ = 0,4726978344\) nên \(\cot {25^0}18′ = \frac{1}{{\tan {{25}^0}18′}} = 2,115516356 \approx 2,116\)


Luyện tập5

Trả lời câu hỏi Luyện tập 5 trang 72

Dùng MTCT, tìm các góc \(\alpha \) (làm tròn đến phút) , biết:

a) \(\sin \alpha = 0,3782;\)

b) \(\cos \alpha = 0,6251;\)

c) \(\tan \alpha = 2,154;\)

d) \(\cot \alpha = 3,253.\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để tìm góc \(\alpha \) khi biết \(\sin \alpha = 0,3782\) thì ta bấm MTCT:

ta được kết quả 22,24203814 thì ta bấm tiếp 0’’’ ta được kết quả \({22^0}14’31,34” \approx {22^0}15’\) tương tự đối với trường hợp cos và tan. Tuy nhiên đối với trường hợp tìm \(\alpha \) khi biết \(\cot \alpha \) thì ta có thể tìm góc \({90^0} - \alpha \) (vì \(\tan \left( {{{90}^0} - \alpha } \right) = \cot \alpha \) từ đó ta tính được \(\alpha \)) .

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) \(\sin \alpha = 0,3782;\)

Ta có: \(\sin \alpha = 0,3782\) nên \(\alpha = {22^0}14’31,34” \approx {22^0}15’\)

b) \(\cos \alpha = 0,6251;\)

Ta có: \(\cos \alpha = 0,6251\) nên \(\alpha = {51^0}18’37,7 \approx {51^0}19’\)

c) \(\tan \alpha = 2,154;\)

Ta có: \(\tan \alpha = 2,154\) nên \(\alpha = {65^0}5’48,46” \approx {65^0}5’\)

d) \(\cot \alpha = 3,253.\)

Ta có: \(\cot \alpha = 3,253\) nên \({90^0} - \alpha = {72^0}54’43,65” \approx {72^0}55’\)

Do đó \(\alpha \approx {90^0} - {72^0}55′ = {17^0}5’\)


Vận dụng

Trả lời câu hỏi Vận dụng trang 72

Trở lại bài toán ở tình huống mở đầu: Trong một toàn chung cư, biết đoạn dốc vào sảnh toàn nhà dài 4 m, độ cao của đỉnh dốc bằng 0,4 m.

a) Hãy tính góc dốc.

b) Hỏi góc đó có đúng tiêu chuẩn của dốc cho người đi xe lăn không?

Tình huống mở đầu:

Ta có thể xác định “góc dốc” \(\alpha \) của một đoạn đường dốc khi biết độ dài của dốc là a và độ cao của đỉnh dốc so với đường nằm ngang là h không? (H.4.1)

(Trong các tòa chung cư, người ta thường thiết kế đoạn dốc cho người đi xe lăn với góc dốc bé hơn \({6^0}\)) .

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Với con dốc ta biết chiều cao (cạnh đối) và chiều dài sảnh dốc (cạnh huyền) của tam giác vuông có góc nhọn \(\alpha \), để tính \(\alpha \) thì ta dùng tỉ số lượng giác \(\sin \alpha \)

Answer - Lời giải/Đáp án

Ta có: \(\sin \alpha = \frac{h}{a} = \frac{{0,4}}{4} = 0,1\), do đó \(\alpha \approx {5^0}44′.\)


Tranh luận

Trả lời câu hỏi Tranh luận trang 72

Để tính khoảng cách giữa hai địa điểm A, B không đo trực tiếp được, chẳng hạn A và B là hai địa điểm ở hai bên sông, người ta lấy điểm C về phía bờ sông có chứa B sao cho tam giác ABC vuông tại B. Ở bên bờ sông chứa B, người ta đo được \(\widehat {ACB} = \alpha \) và \(BC = a\) (H.4.10) . Với các dữ liệu đó, đã tính được khoảng cách AB chưa? Nếu được, hãy tính AB, biết \(\alpha = {55^0},a = 70\) m.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Tam giác ABC vuông tại B biết số đo góc \(\alpha \) và cạnh kề BC, cần tính cạnh AB (cạnh đối) do đó ta dùng tỉ số lượng giác \(\tan \alpha \)

Answer - Lời giải/Đáp án

Ta có: \(\tan \alpha = \frac{{AB}}{{BC}}\) hay \(\tan {55^0} = \frac{{AB}}{{70}}\) suy ra \(AB = 70.\tan {55^0} \approx 99,97\) m.

Vậy khoảng cách AB khoảng 99,97 m.