Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 3 trang 119 Tài liệu dạy – học Toán 9 tập...

Bài 3 trang 119 Tài liệu dạy – học Toán 9 tập 1: Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điểm...

Bài tập - Chủ đề 5 : Sự xác định đường tròn. Tính chất đối xứng của đường tròn. Bài 3 trang 119 Tài liệu dạy – học Toán 9 tập 1. Giải bài tập Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điểm

Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí tương đối của mỗi điểm \(M( - 1;1),N(\sqrt 2 ; - \sqrt 2 ),P(1; - 2)\) đối với đường tròn (O;2).

Cho đường tròn \(\left( {O;R} \right)\) và điểm M.

+) Nếu \(OM < R \Rightarrow \) Điểm M nằm bên trong đường tròn.

+) Nếu \(OM = R \Rightarrow \) Điểm M nằm trên đường tròn.

+) Nếu \(OM > R \Rightarrow \) Điểm M nằm bên ngoài đường tròn.

 

Advertisements (Quảng cáo)

Cho điểm \(M\left( {x;y} \right)\). Gọi H, K lần lượt là hình chiếu của M trên Ox và Oy, khi đó ta có \(OH = \left| {{x_M}} \right|;\,\,OK = \left| {{y_M}} \right|\).

Do OHMK là hình chữ nhật (Tứ giác có 3 góc vuông) \( \Rightarrow MH = OK = \left| {{y_M}} \right|\).

Áp dụng định lí Pytago trong tam giác vuông OMH có:

\(O{M^2} = \sqrt {O{H^2} + H{M^2}} \)\(\, = \sqrt {{{\left| {{x_M}} \right|}^2} + {{\left| {{y_M}} \right|}^2}}  = \sqrt {x_M^2 + y_M^2} \).

Áp dụng công thức trên ta tính được:

\(\begin{array}{l}OM = \sqrt {{{\left( { - 1} \right)}^2} + {1^2}}  = \sqrt 2 \\ON = \sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( { - \sqrt 2 } \right)}^2}}  = \sqrt 4  = 2\\OP = \sqrt {{1^2} + {{\left( { - 2} \right)}^2}}  = \sqrt 5 \end{array}\)

+) Vì \(OM < R\,\,\left( {\sqrt 2  < 2} \right) \Rightarrow \) Điểm M nằm bên trong \(\left( {O;2} \right)\).

+) Vì \(ON = R\,\,\left( {2 = 2} \right) \Rightarrow \) Điểm N nằm trên \(\left( {O;2} \right)\).

+) Vì \(OP > R\,\,\left( {\sqrt 5  > 2} \right) \Rightarrow \) Điểm P nằm bên ngoài \(\left( {O;2} \right)\).

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: