Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Hoạt động 3 trang 85 Dạy và học Toán 9 tập 2:...

Hoạt động 3 trang 85 Dạy và học Toán 9 tập 2: Trên đường tròn (O) lấy hai điểm A, B. Hai tiếp tuyến tại A và B cắt nhau tại M (xem hình bên)....

2. Góc tạo bởi tia tiếp tuyến và dây cung - Hoạt động 3 trang 85 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Trên đường tròn (O) lấy hai điểm A, B. Hai tiếp tuyến tại A và B cắt nhau tại M (xem hình bên).

Trên đường tròn (O) lấy hai điểm A, B. Hai tiếp tuyến tại A và B cắt nhau tại M (xem hình bên). Hãy chứng minh AB vuông góc với OM rồi so sánh các góc \(\widehat {BAM},\widehat {AOM},\widehat {BOM}\).

 

Ta có \(OA = OB = R \Rightarrow O\) thuộc trung trực của AB

\(MA = MB\) (tính chất hai tiếp tuyến cắt nhau) \( \Rightarrow M\) thuộc trung trực của AB.

Từ đó suy ra OM là đường trung trực của AB \( \Rightarrow OM \bot AB\).

Gọi \(H = OM \cap AB\) ta có:

Advertisements (Quảng cáo)

 

\(\widehat {BAM} + \widehat {AOB} = \widehat {AOM} = {90^0}\) (do AM là tiếp tuyến của (O) nên \(AM \bot OA\))

Tam giác OAH vuông tại H nên \(\widehat {AOM} + \widehat {AOB} = {90^0}\) (hai góc nhọn trong tam giác vuông thì phụ nhau).

\( \Rightarrow \widehat {BAM} = \widehat {AOM}\).

Lại có \(\widehat {AOM} = \widehat {BOM}\) (tính chất hai tiếp tuyến cắt nhau).

Vậy \(\widehat {BAM} = \widehat {AOM} = \widehat {BOM}\) (đpcm).

 

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: