Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 13 trang 72 sgk Toán 9 tập 2, Bài 13. Chứng...

Bài 13 trang 72 sgk Toán 9 tập 2, Bài 13. Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau....

Bài 13. Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.. Bài 13 trang 72 sgk Toán lớp 9 tập 2 - Bài 2. Liên hệ giữa cung và dây

Bài 13. Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.

Hướng dẫn giải:

Giả sử \(AB\) và \(CD\) là các dây song song của đường tròn \((O)\).

Kẻ \(OI \bot AB\) \((I \in AB)\) và \(OK \bot CD (K\in CD)\).

Do \(AB //CD\) nên \(I,O,K\) thẳng hàng.

Do các tam giác \(OAB, OCD\) là các tam giác cân đỉnh \(O\) nên các đường cao kẻ từ đỉnh đồng thời là phân giác.

Advertisements (Quảng cáo)

Vì vậy ta có: \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\)

Giả sử \(AB\) nằm ngoài \(\widehat{COD}\), ta có: \(\widehat {AOC} = {180^0} - \widehat {{O_1}} - \widehat {{O_3}} = {180^0} - \widehat {{O_2}} - \widehat {{O_4}} = \widehat {BOD}\)

Suy ra  \(\overparen{AC}\)= \(\overparen{BD}\).

Nghĩa là hai cung bị chắn giữa hai dây song song thì bằng nhau. Các trường hợp khác ta chứng minh tương tự.

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)