Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 2 trang 7 sgk Toán 9 tập 2, Với mỗi phương...

Bài 2 trang 7 sgk Toán 9 tập 2, Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:...

Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó. Bài 2 trang 7 sgk Toán 9 tập 2 - Bài 1. Phương trình bậc nhất hai ẩn.

2. Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:

a) \(3x - y = 2\);                                      b)\( x + 5y = 3\);

c) \(4x - 3y = -1\);                                 d) \(x  +5y = 0\);

e) \(4x + 0y = -2\);                                  f) \(0x + 2y = 5\).

a) Ta có phương trình \(3x - y = 2 \)      (1)          

          (1) ⇔ \(\left\{\begin{matrix} x \in R & & \\ y = 3x - 2 & & \end{matrix}\right.\)

Ta được nghiệm tổng quát của phương trình là: \((x;3x-2)\)

* Vẽ đưởng thẳng biểu diễn tập nghiệm của phương trình \(y = 3x - 2\) :

Cho \(x = 0 \Rightarrow y =  - 2\) ta được \(A(0; -2)\).

Cho \(y = 0 \Rightarrow x = {2 \over 3}\) ta được \(B(\frac{2}{3}; 0)\).

Biểu diễn cặp số \(A(0; -2)\) và \(B(\frac{2}{3}; 0)\) trên hệ trục tọa độ và đường thẳng AB chính là tập nghiệm của phương trình \(3x - y = 2\).

b)Ta có phương trình \(x + 5y = 3\)    (2)

(2) ⇔ \(\left\{\begin{matrix} x = -5y + 3 & & \\ y \in R & & \end{matrix}\right.\) 

Ta được nghiệm tổng quát của phương trình là (-5y + 3; y).

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(x=-5y+3\) :

+) Cho  \(x = 0 \Rightarrow y = {3 \over 5}\) ta được \(A\left( {0;{3 \over 5}} \right)\).

+) Cho \(y = 0 \Rightarrow x = 3\) ta được \(B\left( {3;0} \right)\).

Biểu diễn cặp số \(A\left( {0;{3 \over 5}} \right)\), \(B\left( {3;0} \right)\) trên hệ trục toa độ và đường thẳng AB chính là tập nghiệm của phương trình.

     

c) Ta có phương trình \(4x - 3y = -1\)    (3)

   (3) ⇔ \(\left\{\begin{matrix} x \in R & & \\ y = \frac{4}{3}x + \frac{1}{3}& & \end{matrix}\right.\)

Ta được nghiệm tổng quát của phương trình là: \(\left( {x;{4 \over 3}x + {1 \over 3}} \right)\).

Advertisements (Quảng cáo)

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(4x-3y=-1\)

+) Cho \(x = 0 \Rightarrow y = {1 \over 3}\) ta được \(A\left( {0;{1 \over 3}} \right)\)

+) Cho \(y = 0 \Rightarrow x = -{{  1} \over 4}\) ta được \(B\left( {-{1 \over 4};0} \right)\)

Biểu diễn cặp số \(A (0; \frac{1}{3})\) và \(B (-\frac{1}{4}\); 0) trên hệ tọa độ và đường thẳng AB chính là tập nghiệm của phương trình \(4x-3y=-1\).

 

d)Ta có phương trình \(x + 5y = 0\)    (4)  

(4) ⇔ \(\left\{\begin{matrix} x = -5y & & \\ y \in R & & \end{matrix}\right.\)

Ta được nghiệm tổng quát của phương trình là: \((-5y;y)\).

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(x+5y=0\)

+) Cho \(x = 0 \Rightarrow y = 0\) ta được \(O\left( {0;0} \right)\)

+) Cho \(y = 1 \Rightarrow x = -5\) ta được \(A\left( {-5;1}\right)\).

Biểu diễn cặp số \(O (0; 0)\) và \(A (-5; 1)\) trên hệ tọa độ và đường thẳng OA chính là tập nghiệm của phương trình \(x+5y=0\).

  

e) Ta có phương trình \(4x + 0y = -2\)       (5)

(5)   ⇔ \(\left\{\begin{matrix} x = -\frac{1}{2} & & \\ y \in R & & \end{matrix}\right.\)

Ta được nghiệm tổng quát của phương trình là: \(\left( - {1 \over 2} ;y \right)\)

Tập nghiệm là đường thẳng \(x = -\frac{1}{2}\), qua \(A (-\frac{1}{2}; 0)\) và song song với trục tung.

  

f) 0x + 2y = 5       (6)

 (6) ⇔ \(\left\{\begin{matrix} x \in R & & \\ y = \frac{5}{2} & & \end{matrix}\right.\)

Ta được nghiệm tổng quát của phương trình là \(\left( {x;{5 \over 2}} \right)\)

Tập nghiệm là đường thẳng \(y = {5 \over 2}\) qua \(A\left( {0;{5 \over 2}} \right)\) và song song với trục hoành.

  

 

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)