Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 83 trang 99 sgk Toán 9 tập 2,Vẽ hình 62

Bài 83 trang 99 sgk Toán 9 tập 2,Vẽ hình 62...

a) Vẽ hình 62. Bài 83 trang 99 sgk Toán lớp 9 tập 2 - Bài 10. Diện tích hình tròn hình quạt tròn

Bài 83. a) Vẽ hình 62 (tạo bởi các cung tròn) với \(HI = 10cm\) và \(HO = 2cm\). Nêu cách vẽ.

b) Tính diện tích hình \(HOABINH\) (miền gạch sọc)

c) Chứng tỏ rằng hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\) đó.

Hướng dẫn giải:

a) Vẽ nửa đường tròn đường kính \(HI = 10 cm\), tâm \(M\)

Trên đường kính \(HI\) lấy điểm \(O\) và điểm \(B\) sao cho \(HO = BI = 2cm\).

Advertisements (Quảng cáo)

Vẽ hai nửa đường tròn đường kính \(HO\), \(BI\) nằm cùng phía với đường tròn \((M)\).

vẽ nửa đường tròn đường kính \(OB\) nằm khác phía đối với đường tròn \((M)\). Đường thẳng vuông góc với \(HI\) tại \(M\) cắt \((M)\) tại \(N\) và cắt đường tròn đường kính \(OB\) tại \(A\).

b)  Diện tích hình \(HOABINH\) là:

\(\frac{1}{2}\).\(π.5^2\) + \(\frac{1}{2}\).\(π.3^2\) – \(π.1^2\) = \(\frac{25}{2}π\) + \(\frac{9}{2}π\) - \(π\) = \(16π\) (\(cm^2\)) (1)

c) Diện tích hình tròn đường kính \(NA\) bằng:

             \(π. 4^2 = 16π\)  (\(cm^2\))                                           (2)

So sánh (1) và (2) ta thấy hình tròn đường kính \(NA\) có cùng diện tích với hình \(HOABINH\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)