Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 3 trang 92 vở thực hành Toán 9 tập 2: Cho...

Bài 3 trang 92 vở thực hành Toán 9 tập 2: Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC...

Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó, \(\widehat {BAH} = {90^o} - \widehat {ABC}\). Trả lời Giải bài 3 trang 92 vở thực hành Toán 9 tập 2 - Bài 28. Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác . Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Chứng minh rằng \(\widehat {BAH} = \widehat {OAC}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó, \(\widehat {BAH} = {90^o} - \widehat {ABC}\).

+ \(\Delta AOC\) cân tại O nên: \(\widehat {OAC} = \widehat {OCA} = \frac{{{{180}^o} - \widehat {AOC}}}{2} = {90^o} - \frac{{\widehat {AOC}}}{2} = {90^o} - \widehat {ABC}\).

Advertisements (Quảng cáo)

+ Do đó, \(\widehat {BAH} = \widehat {OAC}\).

Answer - Lời giải/Đáp án

Cho AH cắt BC tại D ta được tam giác ABD vuông tại D. Khi đó, \(\widehat {BAH} = \widehat {BAD} = {90^o} - \widehat {ABD} = {90^o} - \widehat {ABC}\left( 1 \right)\)

Mặt khác, vì \(\Delta AOC\) cân tại O nên: \(\widehat {OAC} = \widehat {OCA} = \frac{{{{180}^o} - \widehat {AOC}}}{2} = {90^o} - \frac{{\widehat {AOC}}}{2} = {90^o} - \widehat {ABC}\;\left( 2 \right)\)

Từ (1), (2) suy ra: \(\widehat {BAH} = \widehat {OAC}\).

Advertisements (Quảng cáo)