Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 6 trang 61 vở thực hành Toán 9: Rút gọn biểu...

Bài 6 trang 61 vở thực hành Toán 9: Rút gọn biểu thức A = √x 1/√x + 3 - 1/3 - √x \;\...

Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân. Vận dụng kiến thức giải - Bài 6 trang 61 vở thực hành Toán 9 - Bài 9. Biến đổi đơn giản và rút gọn biểu thức chứa căn thức bậc hai. Rút gọn biểu thức (A = sqrt x left( {frac{1}{{sqrt x + 3}} - frac{1}{{3 - sqrt x }}} right);;left( {x ge 0, x ne 9} right))...

Question - Câu hỏi/Đề bài

Rút gọn biểu thức \(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right)\;\;\left( {x \ge 0,x \ne 9} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Khi rút gọn biểu thức có chứa căn thức bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân, chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

\(A = \sqrt x \left( {\frac{1}{{\sqrt x + 3}} - \frac{1}{{3 - \sqrt x }}} \right) = \sqrt x .\frac{{3 - \sqrt x - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {3 - \sqrt x } \right)}}\)

\( = \sqrt x .\frac{{ - 2\sqrt x }}{{\left( {\sqrt x + 3} \right)\left( {3 - \sqrt x } \right)}} = \frac{{2x}}{{x - 9}}\)

Advertisements (Quảng cáo)