Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 8 trang 109 vở thực hành Toán 9 tập 2: Cho...

Bài 8 trang 109 vở thực hành Toán 9 tập 2: Cho lục giác đều ABCDEF nội tiếp đường tròn (O). Chứng tỏ rằng nếu một phép quay biến A...

Phép quay thuận chiều \({\alpha ^o}\left( {{0^o} < {\alpha ^o} < {{360}^o}} \right)\) tâm O giữ nguyên điểm O. Hướng dẫn giải Giải bài 8 trang 109 vở thực hành Toán 9 tập 2 - Luyện tập chung trang 106 . Cho lục giác đều ABCDEF nội tiếp đường tròn (O). Chứng tỏ rằng nếu một phép quay biến A,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho lục giác đều ABCDEF nội tiếp đường tròn (O). Chứng tỏ rằng nếu một phép quay biến A, B thành B, C thì phép quay đó giữ nguyên lục giác đều ABCDEF.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Phép quay thuận chiều \({\alpha ^o}\left( {{0^o} < {\alpha ^o} < {{360}^o}} \right)\) tâm O giữ nguyên điểm O, biến điểm A khác điểm O thành điểm B thuộc đường tròn (O; OA) sao cho tia OA quay thuận chiều kim đồng hồ đến tia OB thì điểm A tạo nên cung AB có số đo \({\alpha ^o}\).

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

Vì phép quay biến A thành B và biến B thành C nên tâm của phép quay này nằm trên các đường trung trực của các đoạn thẳng AB và BC.

Do hai đường trung trực của hai đoạn thẳng AB, BC cắt nhau tại O (tâm đường tròn ngoại tiếp tam giác ABC) nên O chính là tâm của phép quay nói trên.

Do \(\widehat {AOB} = {60^o}\) nên phép quay trên là phép quay thuận chiều hoặc ngược chiều \({60^o}\) với tâm O.

Cả hai phép quay thuận chiều \({60^o}\) hoặc ngược chiều \({60^o}\) với tâm O đều giữ nguyên lục giác đều.

Do đó phép quay đã cho giữ nguyên lục giác đều.

Advertisements (Quảng cáo)