Đường tròn ngoại tiếp của hình chữ nhật có tâm là giao điểm của hai đường chéo và bán kính. Hướng dẫn giải Câu 2 trang 98 Vở thực hành Toán 9 - Bài 29. Tứ giác nội tiếp.
Câu hỏi/bài tập:
Cho hình chữ nhật ABCD có \(AB = 3cm,BC = 4cm\) và nội tiếp đường tròn (O; R). Khẳng định nào sau đây là sai?
A. O là trung điểm của AC.
B. O là trung điểm của BD.
C. \(R = 5cm\).
D. \(R = 2,5cm\).
Advertisements (Quảng cáo)
Đường tròn ngoại tiếp của hình chữ nhật có tâm là giao điểm của hai đường chéo và bán kính bằng nửa độ dài đường chéo.
Vì ABCD là hình chữ nhật và nội tiếp đường tròn (O; R). Do đó, O là trung điểm của AC và BD.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có: \(A{C^2} = A{B^2} + B{C^2} = 25\) nên \(AC = 5cm\). Do đó, \(R = \frac{{AC}}{2} = 2,5cm\).
Chọn C