Chọn phương án đúng trong mỗi câu sau:
Câu 1
Nghiệm của phương trình \(\left( { - 3x + 1} \right)\left( {2x - 5} \right) = 0\) là:
A. \(x = - \frac{1}{3},x = \frac{5}{2}\).
B. \(x = \frac{1}{3},x = - \frac{5}{2}\).
C. \(x = \frac{1}{3},x = \frac{5}{2}\).
D. \(x = - \frac{1}{3},x = - \frac{5}{2}\).
Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\). Sau đó lấy tất cả các nghiệm của chúng.
\(\left( { - 3x + 1} \right)\left( {2x - 5} \right) = 0\) nên \( - 3x + 1 = 0\) hoặc \(2x - 5 = 0\).
+) \( - 3x + 1 = 0\) hay \( - 3x = - 1\), suy ra \(x = \frac{1}{3}\).
+) \(2x - 5 = 0\) hay \(2x = 5\), suy ra \(x = \frac{5}{2}\).
Vậy nghiệm của phương trình đã cho là \(x = \frac{1}{3},x = \frac{5}{2}\).
Chọn C
Câu 2
Nghiệm của phương trình \({x^2} - 16 = 0\) là
A. \(x = 4\).
B. \(x = - 4\).
C. \(x = 4\), \(x = - 4\).
D. \(x = 16\), \(x = - 16\).
+ Sử dụng hằng đẳng thức đưa phương trình đã cho về dạng phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\).
+ Để giải phương trình tích \(\left( {ax + b} \right)\left( {cx + d} \right) = 0\), ta giải hai phương trình \(ax + b = 0\) và \(cx + d = 0\). Sau đó lấy tất cả các nghiệm của chúng.
\({x^2} - 16 = 0\) nên \(\left( {x - 4} \right)\left( {x + 4} \right) = 0\), suy ra \(x - 4 = 0\) hoặc \(x + 4 = 0\).
+) \(x - 4 = 0\) suy ra \(x = 4\).
+) \(x + 4 = 0\) suy ra \(x = - 4\).
Vậy nghiệm của phương trình đã cho là \(x = 4\), \(x = - 4\).
Chọn C
Advertisements (Quảng cáo)
Câu 3
Điều kiện xác định của phương trình \(\frac{{2x}}{{x + 3}} - \frac{{5x}}{{5x + 2}} = 1\) là
A. \(x \ne - 3\) và \(x \ne \frac{2}{5}\).
B. \(x \ne - 3\) và \(x \ne - \frac{2}{5}\).
C. \(x \ne - 3\).
D. \(x \ne - \frac{2}{5}\).
Đối với phương trình chứa ẩn ở mẫu, ta thường đặt điều kiện cho ẩn để tất cả các mẫu thức trong phương trình đều khác 0 và được gọi là điều kiện xác định (viết tắt là ĐKXĐ) của phương trình.
Vì \(x + 3 \ne 0\) khi \(x \ne - 3\) và \(5x + 2 \ne 0\) khi \(x \ne - \frac{2}{5}\) nên ĐKXĐ của phương trình \(\frac{{2x}}{{x + 3}} - \frac{{5x}}{{5x + 2}} = 1\) là \(x \ne - 3\) và \(x \ne - \frac{2}{5}\).
Chọn B
Câu 4
Nghiệm của phương trình \(\frac{{{x^2} + 3x}}{{x + 3}} = 0\) là
A. \(x = 0;x = - 3\).
B. \(x = 0\).
C. \(x = - 3\).
D. \(x = 3\).
Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:
Bước 1. Tìm điều kiện xác định của phương trình.
Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3. Giải phương trình vừa tìm được.
Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.
ĐKXĐ: \(x \ne - 3\).
\(\frac{{{x^2} + 3x}}{{x + 3}} = 0\) nên \({x^2} + 3x = 0\)
\(x\left( {x + 3} \right) = 0\)
\(x = 0\) (do \(x \ne - 3\))
Giá trị \(x = 0\) thỏa mãn ĐKXĐ. Vậy nghiệm của phương trình đã cho là \(x = 0\).
Chọn B