Trang chủ Lớp 10 SBT Toán 10 - Cánh diều Bài 30 trang 56 SBT toán 10 Cánh diều:  

Bài 30 trang 56 SBT toán 10 Cánh diều:  ...

Giải bài 30 trang 56 SBT toán 10 - Cánh diều - Bài 4. Bất phương trình bậc hai một ẩn

Question - Câu hỏi/Đề bài

Dựa vào đồ thị hàm số bậc hai \(y = f\left( x \right)\) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: \(f\left( x \right) > 0;f\left( x \right) < 0;f\left( x \right) \ge 0;f\left( x \right) \le 0\)

Phần đồ thị nằm dưới trục hoành tương ứng với \(f(x) < 0\)

Phần đồ thị nằm trên trục hoành tương ứng với \(f(x) > 0\)

 

Dựa vào parabol \(y = a{x^2} + bx + c\), ta tìm tập hợp những giá trị của \(x\) ứng với phần trên hoặc dưới trục hoành tùy dấu của tam thức bậc hai

Answer - Lời giải/Đáp án

a) Quan sát đồ thị ở Hình 18a, ta có đồ thị hàm số \(y = f(x)\) nằm phía dưới trục hoành và không cắt trục hoành nên \(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\). Do đó:

+ Tập nghiệm của BPT \(f\left( x \right) > 0\) là \(S = \emptyset \)

+ Tập nghiệm của BPT \(f\left( x \right) < 0\) là \(S = \mathbb{R}\)

+ Tập nghiệm của BPT \(f\left( x \right) \ge 0\) là \(S = \emptyset \)

Advertisements (Quảng cáo)

+ Tập nghiệm của BPT \(f\left( x \right) \le 0\) là \(S = \mathbb{R}\)

b) Quan sát đồ thị ở Hình 18b, ta có:

Phần đồ thị nằm trên trục hoành ứng với \(1 < x < 3\)

Phần đồ thị nằm dưới trục hoành ứng với \(x < 1\) và \(x > 3\)

Đồ thị cắt trục hoành tại điểm có hoành độ \(x = 1\) và \(x = 3\)

Kết luận

+ Tập nghiệm của BPT \(f\left( x \right) > 0\) là \(S = \left( {1;3} \right)\)

+ Tập nghiệm của BPT \(f\left( x \right) < 0\) là \(S = \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\)

+ Tập nghiệm của BPT \(f\left( x \right) \ge 0\) là \(S = \left[ {1;3} \right]\)

+ Tập nghiệm của BPT \(f\left( x \right) \le 0\) là \(S = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) Quan sát đồ thị ở Hình 18c, ta có đồ thị hàm số \(y = f(x)\) nằm phía dưới trục hoành và cắt trục hoành tại A(2;0) nên \(f\left( x \right) \le 0\) với mọi \(x \in \mathbb{R}\).

+ Tập nghiệm của BPT \(f\left( x \right) > 0\) là \(S = \emptyset \)

+ Tập nghiệm của BPT \(f\left( x \right) < 0\) là \(S = \mathbb{R}{\rm{\backslash }}\{ 2\} \)

+ Tập nghiệm của BPT \(f\left( x \right) \ge 0\) là \(S = 2\)

+ Tập nghiệm của BPT \(f\left( x \right) \le 0\) là \(S = \mathbb{R}\)