Một tình huống trong huấn luyện pháo binh được mô tả như sau: Trong mặt phẳng tọa độ \(Oxy\) (đơn vị trên hai trục tính theo mét), một viên đạn được bắn từ vị trí \(O\left( {0;0} \right)\) theo quỹ đạo là đường parabol \(y = - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x\). Tìm khoảng cách theo trục hoành của viên đạn so với vị trí bắn khi viên đạn đang ở độ cao lớn hơn 15m (làm tròn kết quả đến hàng phần trăm theo đơn vị mét).
Giải bất phương trình
Advertisements (Quảng cáo)
Độ cao viên đạn lớn hơn 15 m nên \( - \frac{9}{{1\;000\;000}}{x^2} + \frac{3}{{100}}x > 15 \Leftrightarrow - 3{x^2} + 10\;000x - 5\;000\;000 > 0\)
\( \Rightarrow \frac{{5\;000 - 1\;000\sqrt {10} }}{3} < x < \frac{{5\;000 + 1\;000\sqrt {10} }}{3}\)
Vậy khoảng cách theo trục hoành của viên đạn so với vị trí bắn viên đạn đang ở độ cao lớn hơn 15 m là nằm trong khoảng \(\left( {\frac{{5\;000 - 1\;000\sqrt {10} }}{3};\frac{{5\;000 + 1\;000\sqrt {10} }}{3}} \right)\) xấp xỉ \(\left( {612,57;2720,76} \right)\).