Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 10 trang 66 SBT toán 10 Chân trời sáng tạo: Tính...

Bài 10 trang 66 SBT toán 10 Chân trời sáng tạo: Tính khoảng cách giữa hai đường thẳng: (Delta :6x + 8y - 11 = 0) và (Delta ‘:6x...

Giải bài 10 trang 66 SBT toán 10 - Chân trời sáng tạo - Bài 2. Đường thẳng trong mặt phẳng tọa độ

Question - Câu hỏi/Đề bài

Tính khoảng cách giữa hai đường thẳng: \(\Delta :6x + 8y - 11 = 0\) và \(\Delta ‘:6x + 8y - 1 = 0\)

Khoảng cách giữa hai đường thẳng song song \(d:ax + by + c = 0\) và \(d’:ax + by + c’ = 0\) là \(d\left( {d,d’} \right) = \frac{{\left| {c - c’} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Ta thấy \(\Delta \) và \(\Delta ‘\) song song với nhau do có cùng VTPT \(\overrightarrow n  = (6;8)\)

\( \Rightarrow \) Khoảng cách giữa hai đường thẳng là:

\(d\left( {\Delta ,\Delta ‘} \right) = \frac{{\left| { - 11 - \left( { - 1} \right)} \right|}}{{\sqrt {{6^2} + {8^2}} }} = 1\)

Advertisements (Quảng cáo)