Trang chủ Lớp 10 SBT Toán 10 - Chân trời sáng tạo Bài 7 trang 66 SBT toán 10 Chân trời sáng tạo: Tìm...

Bài 7 trang 66 SBT toán 10 Chân trời sáng tạo: Tìm số đo của góc giữa hai đường thẳng ({d_1}) và ({d_2}) trong các trường hợp s...

Giải bài 7 trang 66 SBT toán 10 – Chân trời sáng tạo – Bài 2. Đường thẳng trong mặt phẳng tọa độ

Tìm số đo của góc giữa hai đường thẳng \({d_1}\) và \({d_2}\) trong các trường hợp sau:

a) \({d_1}:5x – 3y + 1 = 0\) và \({d_2}:10x – 6y – 7 = 0\)

b) \({d_1}:7x – 3y + 7 = 0\) và \({d_2}:3x + 7y – 10 = 0\)

c) \({d_1}:2x – 4y + 9 = 0\) và \({d_2}:6x – 2y – 2023 = 0\)

\(\left( {a;b} \right)\) và \(\left( {c;d} \right)\) cùng là vectơ pháp tuyến hoặc chỉ phương của hai đường thẳng \({d_1}\) và \({d_2}\).

Góc giữa hai đường thẳng là \(\varphi \), thì \(cos\varphi  = \frac{{\left| {ac + bd} \right|}}{{\sqrt {{a^2} + {b^2}} \sqrt {{c^2} + {d^2}} }}\)

Advertisements (Quảng cáo)

a) Vectơ pháp tuyến của hai đường thẳng lần lượt là \(\left( {5; – 3} \right)\) và \(\left( {10; – 6} \right) = 2\left( {5; – 3} \right)\)

=> Hai vecto pháp tuyến cùng phương.

→ Hai đường thẳng song song với nhau\( \Rightarrow \varphi  = {0^ \circ }\)

b) Vectơ pháp tuyến của hai đường thẳng lần lượt là \(\left( {7; – 3} \right)\) và \(\left( {3;7} \right)\).

Ta có: \(\left( {7; – 3} \right).\left( {3;7} \right) = 0\)

\(\Rightarrow \) Hai đường thẳng vuông góc với nhau \( \Rightarrow \varphi  = {90^ \circ }\)

c) Vectơ pháp tuyến của hai đường thẳng lần lượt là \(\left( {2; – 4} \right)\) và \(\left( {6; – 2} \right)\).

\(cos\varphi  = \frac{{\left| {2.6 + \left( { – 4} \right).\left( { – 2} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { – 4} \right)}^2}} \sqrt {{6^2} + {{\left( { – 2} \right)}^2}} }} = \frac{1}{{\sqrt 2 }} \Rightarrow \varphi  = {45^ \circ }\)