Trang chủ Lớp 10 SBT Toán 10 - Kết nối tri thức Bài 2.23 trang 26 SBT Toán 10 Kết nối tri thức: Tổng...

Bài 2.23 trang 26 SBT Toán 10 Kết nối tri thức: Tổng các giá trị lớn nhất và giá trị nhỏ nhất của biểu thức (Fleft( {x;y} right)...

Giải bài 2.23 trang 26 sách bài tập toán 10 - Kết nối tri thức với cuộc sống - Bài tập cuối chương II

Question - Câu hỏi/Đề bài

Tổng các giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F\left( {x;y} \right) = x + 5y\) với \(\left( {x;y} \right)\) thuộc miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 2 \le y \le 2}\\{x + y \le 4}\\{y - x \le 4}\end{array}} \right.\) là:

A. \( - 20.\)

B. \(-4.\)

C. \(28.\)

D. \( 16.\)

- Vẽ các bất phương trình trên cùng một mặt phẳng tọa độ \(Oxy.\)

- Xác định miền nghiệm của bất phương trình trên.

- Tìm tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức dựa vào miền nghiệm vừa xác định được.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Miền nghiệm của bất phương trình \( - 2 \le y \le 2\) là miền nằm giữa hai đường thẳng \(d:y =  - 2\) và \({d_1}:y = 2\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \(x + y \le 4\) là nửa mặt phẳng bờ \({d_2}:x + y = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của bất phương trình \(y - x \le 4\) là nửa mặt phẳng bờ \({d_3}:y - x = 4\) chứa gốc tọa độ \(O\left( {0;0} \right).\)

Miền nghiệm của hệ bất phương trình trên là hình thang cân \(ABCD\) với \(A\left( { - 2;2} \right),\) \(B\left( {2;2} \right),\) \(C\left( {6; - 2} \right),\) \(D\left( { - 6; - 2} \right).\)

Ta có: \(F\left( { - 2;2} \right) =  - 2 + 5.2 = 8,\,\,F\left( {2;2} \right) = 2 + 5.2 = 12,\)

\(F\left( {6; - 2} \right) = 6 + 5\left( { - 2} \right) =  - 4,\,\,F\left( { - 6; - 2} \right) =  - 6 + 5\left( { - 2} \right) =  - 16.\)

\( \Rightarrow \) giá trị lớn nhất của \(F\) là: \(F\left( {2;2} \right) = 12,\) giá trị nhỏ nhất của \(F\) là: \(F\left( { - 6; - 2} \right) =  - 16.\)

Tổng giá trị lớn nhất và giá trị nhỏ nhất của \(F\) là: \(12 + \left( { - 16} \right) =  - 4.\)

Chọn B.