Trang chủ Lớp 10 SBT Toán 10 - Kết nối tri thức Bài 3.42 trang 44 SBT Toán 10 Kết nối tri thức: Cho...

Bài 3.42 trang 44 SBT Toán 10 Kết nối tri thức: Cho tam giác (ABC) có (a = 3,,,b = 5,,,c = 7.)...

Giải bài 3.42 trang 44 sách bài tập toán 10 - Kết nối tri thức với cuộc sống - Bài tập cuối chương III

Question - Câu hỏi/Đề bài

Cho tam giác \(ABC\) có \(a = 3,\,\,b = 5,\,\,c = 7.\)

a) Tính các góc của tam giác, làm tròn đến độ.

b) Tính bán kính đường tròn nội tiếp và đường tròn ngoại tiếp của tam giác.

- Áp dụng định lý cosin để tính các \(\widehat A,\,\,\widehat B,\,\,\widehat C.\)

- Áp dụng định lý sin để tính R: \(\frac{c}{{\sin C}} = 2R.\)

- Tính nửa chu vi và diện tích của \(\Delta ABC\)

- Tính bán kính đường tròn nội tiếp \(\Delta ABC\): \(r={S \over p} \)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Áp dụng định lý cosin, ta có:

\(\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}\\{\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}\\{\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{25 + 49 - 9}}{{2.5.7}} = \frac{{13}}{{14}}}\\{\cos B = \frac{{9 + 49 - 25}}{{2.3.7}} = \frac{{11}}{{14}}}\\{\cos C = \frac{{9 + 25 - 49}}{{2.3.5}} = \frac{{ - 1}}{2}}\end{array}\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\widehat A \approx {{22}^ \circ }}\\{\widehat B \approx {{38}^ \circ }}\\{\widehat C = {{120}^ \circ }}\end{array}} \right.} \right.} \right.\)

b) Bán kính đường tròn ngoại tiếp \(\Delta ABC\) là:

\(R = \frac{c}{{2\sin C}} = \frac{7}{{2.\sin {{120}^ \circ }}} = \frac{{7\sqrt 3 }}{3}.\)

Nửa chu vi \(\Delta ABC\) là: \(p = \frac{{a + b + c}}{2} = \frac{{3 + 5 + 7}}{2} = \frac{{15}}{2}.\)

Diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}ab\sin C = \frac{1}{2}.3.5.\sin {120^ \circ } = \frac{{15\sqrt 3 }}{4}.\)

Bán kính đường tròn nội tiếp \(\Delta ABC\) là: \(r = \frac{S}{p} = \frac{{15\sqrt 3 }}{4}:\frac{{15}}{2} = \frac{{\sqrt 3 }}{2}.\)

Advertisements (Quảng cáo)